高光谱成像为各种应用提供了新的视角,包括使用空降或卫星遥感,精密养殖,食品安全,行星勘探或天体物理学的环境监测。遗憾的是,信息的频谱分集以各种劣化来源的牺牲品,并且目前获取的缺乏准确的地面“清洁”高光谱信号使得恢复任务具有挑战性。特别是,与传统的RGB成像问题相比,培训深度神经网络用于恢复难以深入展现的传统RGB成像问题。在本文中,我们提倡基于稀疏编码原理的混合方法,其保留与手工图像前导者编码域知识的经典技术的可解释性,同时允许在没有大量数据的情况下训练模型参数。我们在各种去噪基准上展示了我们的方法是计算上高效并且显着优于现有技术。
translated by 谷歌翻译
基于深度学习(DL)的高光谱图像(HSIS)去噪方法直接学习观察到的嘈杂图像和底层清洁图像之间的非线性映射。他们通常不考虑HSIS的物理特征,因此使他们缺乏了解他们的去噪机制的关键。为了解决这个问题,我们为HSI去噪提出了一种新颖的模型指导可解释网络。具体而言,完全考虑HSI的空间冗余,光谱低秩和光谱空间特性,我们首先建立基于子空间的多维稀疏模型。该模型首先将观察到的HSIS投入到低维正交子空间,然后表示具有多维字典的投影图像。之后,该模型展开到名为SMDS-Net的端到端网络中,其基本模块与模型的去噪程序无缝连接。这使得SMDS-Net传达清晰的物理意义,即学习HSIS的低级别和稀疏性。最后,通过端到端培训获得包括词典和阈值处理的所有关键变量。广泛的实验和综合分析证实了我们对最先进的HSI去噪方法的方法的去噪能力和可解释性。
translated by 谷歌翻译
基于深度学习的方法保持最先进的导致低级图像处理任务,但由于其黑匣子结构而难以解释。展开的优化网络通过从经典迭代优化方法导出它们的架构而不使用来自标准深度学习工具盒的技巧来构建深神经网络的可解释的替代方案。到目前为止,这种方法在使用可解释结构的同时,在使用其可解释的结构的同时证明了接近最先进的模型的性能,以实现相对的低学习参数计数。在这项工作中,我们提出了一个展开的卷积字典学习网络(CDLNET),并在低和高参数计数方面展示其竞争的去噪和联合去噪和去除脱落(JDD)性能。具体而言,我们表明,当缩放到类似的参数计数时,所提出的模型优于最先进的完全卷积的去噪和JDD模型。此外,我们利用模型的可解释结构提出了网络中阈值的噪声适应性参数化,该阈值能够实现最先进的盲目的表现,以及在训练期间看不见的噪声水平的完美概括。此外,我们表明这种性能延伸到JDD任务和无监督的学习。
translated by 谷歌翻译
基于深度学习的高光谱图像(HSI)恢复方法因其出色的性能而广受欢迎,但每当任务更改的细节时,通常都需要昂贵的网络再培训。在本文中,我们建议使用有效的插入方法以统一的方法恢复HSI,该方法可以共同保留基于优化方法的灵活性,并利用深神经网络的强大表示能力。具体而言,我们首先开发了一个新的深HSI DeNoiser,利用了门控复发单元,短期和长期的跳过连接以及增强的噪声水平图,以更好地利用HSIS内丰富的空间光谱信息。因此,这导致在高斯和复杂的噪声设置下,在HSI DeNosing上的最新性能。然后,在处理各种HSI恢复任务之前,将提议的DeNoiser插入即插即用的框架中。通过对HSI超分辨率,压缩感测和内部进行的广泛实验,我们证明了我们的方法经常实现卓越的性能,这与每个任务上的最先进的竞争性或甚至更好任何特定任务的培训。
translated by 谷歌翻译
Deconvolution is a widely used strategy to mitigate the blurring and noisy degradation of hyperspectral images~(HSI) generated by the acquisition devices. This issue is usually addressed by solving an ill-posed inverse problem. While investigating proper image priors can enhance the deconvolution performance, it is not trivial to handcraft a powerful regularizer and to set the regularization parameters. To address these issues, in this paper we introduce a tuning-free Plug-and-Play (PnP) algorithm for HSI deconvolution. Specifically, we use the alternating direction method of multipliers (ADMM) to decompose the optimization problem into two iterative sub-problems. A flexible blind 3D denoising network (B3DDN) is designed to learn deep priors and to solve the denoising sub-problem with different noise levels. A measure of 3D residual whiteness is then investigated to adjust the penalty parameters when solving the quadratic sub-problems, as well as a stopping criterion. Experimental results on both simulated and real-world data with ground-truth demonstrate the superiority of the proposed method.
translated by 谷歌翻译
最近,从图像中提取的不同组件的低秩属性已经考虑在MAN Hypspectral图像去噪方法中。然而,这些方法通常将3D矩阵或1D向量展开,以利用现有信息,例如非识别空间自相似性(NSS)和全局光谱相关(GSC),其破坏了高光谱图像的内在结构相关性(HSI) )因此导致恢复质量差。此外,由于在HSI的原始高维空间中的矩阵和张量的矩阵和张量的参与,其中大多数受到重大计算负担问题。我们使用子空间表示和加权低级张量正则化(SWLRTR)进入模型中以消除高光谱图像中的混合噪声。具体地,为了在光谱频带中使用GSC,将噪声HSI投影到简化计算的低维子空间中。之后,引入加权的低级张量正则化术语以表征缩减图像子空间中的前导。此外,我们设计了一种基于交替最小化的算法来解决非耦合问题。模拟和实时数据集的实验表明,SWLRTR方法比定量和视觉上的其他高光谱去噪方法更好。
translated by 谷歌翻译
Deep neural networks provide unprecedented performance gains in many real world problems in signal and image processing. Despite these gains, future development and practical deployment of deep networks is hindered by their blackbox nature, i.e., lack of interpretability, and by the need for very large training sets. An emerging technique called algorithm unrolling or unfolding offers promise in eliminating these issues by providing a concrete and systematic connection between iterative algorithms that are used widely in signal processing and deep neural networks. Unrolling methods were first proposed to develop fast neural network approximations for sparse coding. More recently, this direction has attracted enormous attention and is rapidly growing both in theoretic investigations and practical applications. The growing popularity of unrolled deep networks is due in part to their potential in developing efficient, high-performance and yet interpretable network architectures from reasonable size training sets. In this article, we review algorithm unrolling for signal and image processing. We extensively cover popular techniques for algorithm unrolling in various domains of signal and image processing including imaging, vision and recognition, and speech processing. By reviewing previous works, we reveal the connections between iterative algorithms and neural networks and present recent theoretical results. Finally, we provide a discussion on current limitations of unrolling and suggest possible future research directions.
translated by 谷歌翻译
本文解决了高光谱(HS)图像denoising的具有挑战性的问题。与现有的基于深度学习的方法不同,通常采用复杂的网络体系结构或经验堆叠现成的模块以提高性能,我们专注于捕获HS图像的高维特性的高效提取方式。具体来说,基于理论分析,提高由展开的卷积内核形成的矩阵的排名可以促进特征多样性,我们建议分别执行1卷卷积的降级低维卷积集(Re-Convset)沿着HS图像并排的三个维度,然后通过可学习的压缩层汇总所得的空间光谱嵌入。重新汇率不仅了解HS图像的不同空间光谱特征,而且还降低了网络的参数和复杂性。然后,我们将重新汇合纳入广泛使用的U-NET体系结构中,以构建HS图像Denoisising方法。令人惊讶的是,在定量指标,视觉结果和效率方面,我们观察到这样的简洁框架在很大程度上优于最新方法。我们相信我们的工作可能会阐明基于深度学习的HS图像处理和分析。
translated by 谷歌翻译
高光谱成像由于其在捕获丰富的空间和光谱信息的能力上提供了多功能应用,这对于识别物质至关重要。但是,获取高光谱图像的设备昂贵且复杂。因此,已经通过直接从低成本,更多可用的RGB图像重建高光谱信息来提出了许多替代光谱成像方法。我们详细研究了来自广泛的RGB图像的这些最先进的光谱重建方法。对25种方法的系统研究和比较表明,尽管速度较低,但大多数数据驱动的深度学习方法在重建精度和质量方面都优于先前的方法。这项全面的审查可以成为同伴研究人员的富有成果的参考来源,从而进一步启发了相关领域的未来发展方向。
translated by 谷歌翻译
图像增强方法通常假定噪声是无关的,并且将降解模型近似为零均值的加性高斯。但是,这种假设不适合生物医学成像系统,在生物医学成像系统中,基于传感器的噪声源与信号强度成正比,并且噪声更好地表示为泊松过程。在这项工作中,我们探讨了一种基于词典学习的方法,并提出了一种新颖的自我监督学习方法,用于单像denoising,其中噪声近似为泊松过程,不需要干净的地面真实数据。具体而言,我们近似于通过反复的神经网络进行图像降级的传统迭代优化算法,该神经网络可实现相对于网络的权重的稀疏性。由于稀疏表示形式基于基础图像,因此它能够抑制图像贴片中的虚假组件(噪声),从而引入隐式正则化,以通过网络结构来降级任务。在两个生物成像数据集上的实验表明,我们的方法在PSNR和SSIM方面优于最先进的方法。我们的定性结果表明,除了在标准定量指标上进行更高的性能外,我们还能够比其他比较方法恢复更多的细节。我们的代码可在https://github.com/tacalvin/poisson2sparse上公开提供。
translated by 谷歌翻译
约束的张量和矩阵分子化模型允许从多道数据中提取可解释模式。因此,对于受约束的低秩近似度的可识别性特性和有效算法是如此重要的研究主题。这项工作涉及低秩近似的因子矩阵的列,以众所周知的和可能的过度顺序稀疏,该模型包括基于字典的低秩近似(DLRA)。虽然早期的贡献集中在候选列字典内的发现因子列,即一稀疏的近似值,这项工作是第一个以大于1的稀疏性解决DLRA。我建议专注于稀疏编码的子问题,在解决DLRA时出现的混合稀疏编码(MSC)以交替的优化策略在解决DLRA时出现。提供了基于稀疏编码启发式的几种算法(贪婪方法,凸起放松)以解决MSC。在模拟数据上评估这些启发式的性能。然后,我展示了如何基于套索来调整一个有效的MSC求解器,以计算高光谱图像处理和化学测量学的背景下的基于词典的基于矩阵分解和规范的多adic分解。这些实验表明,DLRA扩展了低秩近似的建模能力,有助于降低估计方差并提高估计因子的可识别性和可解释性。
translated by 谷歌翻译
传统上,信号处理,通信和控制一直依赖经典的统计建模技术。这种基于模型的方法利用代表基本物理,先验信息和其他领域知识的数学公式。简单的经典模型有用,但对不准确性敏感,当真实系统显示复杂或动态行为时,可能会导致性能差。另一方面,随着数据集变得丰富,现代深度学习管道的力量增加,纯粹的数据驱动的方法越来越流行。深度神经网络(DNNS)使用通用体系结构,这些架构学会从数据中运行,并表现出出色的性能,尤其是针对受监督的问题。但是,DNN通常需要大量的数据和巨大的计算资源,从而限制了它们对某些信号处理方案的适用性。我们对将原则数学模型与数据驱动系统相结合的混合技术感兴趣,以从两种方法的优势中受益。这种基于模型的深度学习方法通​​过为特定问题设计的数学结构以及从有限的数据中学习来利用这两个部分领域知识。在本文中,我们调查了研究和设计基于模型的深度学习系统的领先方法。我们根据其推理机制将基于混合模型/数据驱动的系统分为类别。我们对以系统的方式将基于模型的算法与深度学习以及具体指南和详细的信号处理示例相结合的领先方法进行了全面综述。我们的目的是促进对未来系统的设计和研究信号处理和机器学习的交集,这些系统结合了两个领域的优势。
translated by 谷歌翻译
This paper proposes a non-data-driven deep neural network for spectral image recovery problems such as denoising, single hyperspectral image super-resolution, and compressive spectral imaging reconstruction. Unlike previous methods, the proposed approach, dubbed Mixture-Net, implicitly learns the prior information through the network. Mixture-Net consists of a deep generative model whose layers are inspired by the linear and non-linear low-rank mixture models, where the recovered image is composed of a weighted sum between the linear and non-linear decomposition. Mixture-Net also provides a low-rank decomposition interpreted as the spectral image abundances and endmembers, helpful in achieving remote sensing tasks without running additional routines. The experiments show the MixtureNet effectiveness outperforming state-of-the-art methods in recovery quality with the advantage of architecture interpretability.
translated by 谷歌翻译
在本文中,我们提出了一种用于HSI去噪的强大主成分分析的新型非耦合方法,其侧重于分别同时为低级和稀疏组分的等级和列方向稀疏性产生更准确的近似。特别是,新方法采用日志确定级别近似和新颖的$ \ ell_ {2,\ log} $常规,以便分别限制组件矩阵的本地低级或列明智地稀疏属性。对于$ \ ell_ {2,\ log} $ - 正常化的收缩问题,我们开发了一个高效的封闭式解决方案,该解决方案名为$ \ ell_ {2,\ log} $ - 收缩运算符。新的正则化和相应的操作员通常可以用于需要列明显稀疏性的其他问题。此外,我们在基于日志的非凸rpca模型中强加了空间光谱总变化正则化,这增强了从恢复的HSI中的空间和光谱视图中的全局转换平滑度和光谱一致性。关于模拟和实际HSIS的广泛实验证明了所提出的方法在去噪HSIS中的有效性。
translated by 谷歌翻译
We introduce a parametric view of non-local two-step denoisers, for which BM3D is a major representative, where quadratic risk minimization is leveraged for unsupervised optimization. Within this paradigm, we propose to extend the underlying mathematical parametric formulation by iteration. This generalization can be expected to further improve the denoising performance, somehow curbed by the impracticality of repeating the second stage for all two-step denoisers. The resulting formulation involves estimating an even larger amount of parameters in a unsupervised manner which is all the more challenging. Focusing on the parameterized form of NL-Ridge, the simplest but also most efficient non-local two-step denoiser, we propose a progressive scheme to approximate the parameters minimizing the risk. In the end, the denoised images are made up of iterative linear combinations of patches. Experiments on artificially noisy images but also on real-world noisy images demonstrate that our method compares favorably with the very best unsupervised denoisers such as WNNM, outperforming the recent deep-learning-based approaches, while being much faster.
translated by 谷歌翻译
深度学习模型是压缩光谱成像(CSI)恢复的最新模型。这些方法使用深神网络(DNN)作为图像发生器来学习从压缩测量到光谱图像的非线性映射。例如,深频谱先验方法在优化算法中使用卷积自动编码器网络(CAE)通过使用非线性表示来恢复光谱图像。但是,CAE训练与恢复问题分离,这不能保证CSI问题的光谱图像的最佳表示。这项工作提出了联合非线性表示和恢复网络(JR2NET),将表示和恢复任务链接到单个优化问题。 JR2NET由ADMM公式遵循优化启发的网络组成,该网络学习了非线性低维表示,并同时执行通过端到端方法训练的光谱图像恢复。实验结果表明,该方法的优势在PSNR中的改进高达2.57 dB,并且性能比最新方法快2000倍。
translated by 谷歌翻译
在本文中,我们引入了一种新算法,该算法基于原型分析,用于假设末日成员的线性混合,用于盲目的高光谱脉冲。原型分析是该任务的自然表述。该方法不需要存在纯像素(即包含单个材料的像素),而是将末端成员表示为原始高光谱图像中几个像素的凸组合。我们的方法利用了熵梯度下降策略,(i)比传统的原型分析算法为高光谱脉冲提供更好的解决方案,并且(ii)导致有效的GPU实现。由于运行我们算法的单个实例很快,我们还提出了一个结合机制以及适当的模型选择程序,该过程使我们的方法可鲁棒性到超参数选择,同时保持计算复杂性合理。通过使用六个标准的真实数据集,我们表明我们的方法的表现优于最先进的矩阵分解和最新的深度学习方法。我们还提供开源pytorch实施:https://github.com/inria-thoth/edaa。
translated by 谷歌翻译
光谱超分辨率(SSR)是指从RGB对应物中恢复的高光谱图像(HSI)。由于SSR问题的一对多性,可以将单个RGB图像恢复到许多HSIS。解决这个暗示问题的关键是插入多源以前的信息,如自然RGB空间上下文的上下文,深度特征或固有的HSI统计事先等,以提高重建的置信度和保真度光谱。然而,大多数目前的方法只考虑设计定制的卷积神经网络(CNN)的一般和有限的前瞻,这导致无法有效地减轻不良程度。为解决有问题的问题,我们为SSR提出了一个新颖的全面的先前嵌入关系网络(HPRN)。基本上,核心框架由几个多剩余关系块(MRB)进行多种组装,其完全便于RGB信号之前的低频内容的传输和利用。创新性地,引入了RGB输入的语义之前,以识别类别属性,并且向前提出了语义驱动的空间关系模块(SSRM)以使用语义嵌入关系矩阵在聚类的类似特征之间执行特征聚合。此外,我们开发了一种基于变换器的通道关系模块(TCRM),其习惯使用标量作为先前深度特征中的频道方面关系的描述符,并用某些向量替换为变换器特征交互,支持表示更加歧视。为了保持高光谱频带之间的数学相关和光谱一致性,将二阶的先前约束(SOPC)结合到丢失功能中以引导HSI重建过程。
translated by 谷歌翻译
It is known that the decomposition in low-rank and sparse matrices (\textbf{L+S} for short) can be achieved by several Robust PCA techniques. Besides the low rankness, the local smoothness (\textbf{LSS}) is a vitally essential prior for many real-world matrix data such as hyperspectral images and surveillance videos, which makes such matrices have low-rankness and local smoothness properties at the same time. This poses an interesting question: Can we make a matrix decomposition in terms of \textbf{L\&LSS +S } form exactly? To address this issue, we propose in this paper a new RPCA model based on three-dimensional correlated total variation regularization (3DCTV-RPCA for short) by fully exploiting and encoding the prior expression underlying such joint low-rank and local smoothness matrices. Specifically, using a modification of Golfing scheme, we prove that under some mild assumptions, the proposed 3DCTV-RPCA model can decompose both components exactly, which should be the first theoretical guarantee among all such related methods combining low rankness and local smoothness. In addition, by utilizing Fast Fourier Transform (FFT), we propose an efficient ADMM algorithm with a solid convergence guarantee for solving the resulting optimization problem. Finally, a series of experiments on both simulations and real applications are carried out to demonstrate the general validity of the proposed 3DCTV-RPCA model.
translated by 谷歌翻译
由于技术成本的降低和卫星发射的增加,卫星图像变得越来越流行和更容易获得。除了提供仁慈的目的外,还可以出于恶意原因(例如错误信息)使用卫星数据。事实上,可以依靠一般图像编辑工具来轻松操纵卫星图像。此外,随着深层神经网络(DNN)的激增,可以生成属于各种领域的现实合成图像,与合成生成的卫星图像的扩散有关的其他威胁正在出现。在本文中,我们回顾了关于卫星图像的产生和操纵的最新技术(SOTA)。特别是,我们既关注从头开始的合成卫星图像的产生,又要通过图像转移技术对卫星图像进行语义操纵,包括从一种类型的传感器到另一种传感器获得的图像的转换。我们还描述了迄今已研究的法医检测技术,以对合成图像伪造进行分类和检测。虽然我们主要集中在法医技术上明确定制的,该技术是针对AI生成的合成内容物的检测,但我们还审查了一些用于一般剪接检测的方法,这些方法原则上也可以用于发现AI操纵图像
translated by 谷歌翻译