本文提出了图像恢复的新变异推理框架和一个卷积神经网络(CNN)结构,该结构可以解决所提出的框架所描述的恢复问题。较早的基于CNN的图像恢复方法主要集中在网络体系结构设计或培训策略上,具有非盲方案,其中已知或假定降解模型。为了更接近现实世界的应用程序,CNN还接受了整个数据集的盲目培训,包括各种降解。然而,给定有多样化的图像的高质量图像的条件分布太复杂了,无法通过单个CNN学习。因此,也有一些方法可以提供其他先验信息来培训CNN。与以前的方法不同,我们更多地专注于基于贝叶斯观点以及如何重新重新重构目标的恢复目标。具体而言,我们的方法放松了原始的后推理问题,以更好地管理子问题,因此表现得像分裂和互动方案。结果,与以前的框架相比,提出的框架提高了几个恢复问题的性能。具体而言,我们的方法在高斯denoising,现实世界中的降噪,盲图超级分辨率和JPEG压缩伪像减少方面提供了最先进的性能。
translated by 谷歌翻译
盲图修复(IR)是计算机视觉中常见但充满挑战的问题。基于经典模型的方法和最新的深度学习(DL)方法代表了有关此问题的两种不同方法,每种方法都有自己的优点和缺点。在本文中,我们提出了一种新颖的盲图恢复方法,旨在整合它们的两种优势。具体而言,我们为盲IR构建了一个普通的贝叶斯生成模型,该模型明确描绘了降解过程。在此提出的模型中,PICEL的非I.I.D。高斯分布用于适合图像噪声。它的灵活性比简单的I.I.D。在大多数常规方法中采用的高斯或拉普拉斯分布,以处理图像降解中包含的更复杂的噪声类型。为了解决该模型,我们设计了一个变异推理算法,其中所有预期的后验分布都被参数化为深神经网络,以提高其模型能力。值得注意的是,这种推论算法诱导统一的框架共同处理退化估计和图像恢复的任务。此外,利用了前一种任务中估计的降解信息来指导后一种红外过程。对两项典型的盲型IR任务进行实验,即图像降解和超分辨率,表明所提出的方法比当前最新的方法实现了卓越的性能。
translated by 谷歌翻译
在实践中,很难收集配对的培训数据,但是不合格的样本广泛存在。当前的方法旨在通过探索损坏的数据和清洁数据之间的关系来从未配对样本中生成合成的培训数据。这项工作提出了Lud-Vae,这是一种从边际分布中采样的数据中学习关节概率密度函数的深层生成方法。我们的方法基于一个经过精心设计的概率图形模型,在该模型中,干净和损坏的数据域在条件上是独立的。使用变异推断,我们最大化证据下限(ELBO)以估计关节概率密度函数。此外,我们表明在推理不变假设下没有配对样品的情况下,ELBO是可以计算的。该属性在未配对的环境中提供了我们方法的数学原理。最后,我们将我们的方法应用于现实世界图像denoising,超分辨率和低光图像增强任务,并使用Lud-vae生成的合成数据训练模型。实验结果验证了我们方法比其他方法的优势。
translated by 谷歌翻译
有许多基于深卷卷神经网络(CNN)的图像恢复方法。但是,有关该主题的大多数文献都集中在网络体系结构和损失功能上,而对培训方法的详细介绍。因此,某些作品不容易重现,因为需要了解隐藏的培训技巧才能获得相同的结果。要具体说明培训数据集,很少有作品讨论了如何准备和订购培训图像补丁。此外,捕获新数据集以训练现实世界中的恢复网络需要高昂的成本。因此,我们认为有必要研究培训数据的准备和选择。在这方面,我们对训练贴片进行了分析,并探讨了不同斑块提取方法的后果。最终,我们提出了从给定训练图像中提取补丁的指南。
translated by 谷歌翻译
虽然最近基于模型的盲目单图像超分辨率(SISR)的研究已经取得了巨大的成功,但大多数人都不认为图像劣化。首先,它们总是假设图像噪声obeys独立和相同分布的(i.i.d.)高斯或拉普拉斯分布,这在很大程度上低估了真实噪音的复杂性。其次,以前的常用核前沿(例如,归一化,稀疏性)不足以保证理性内核解决方案,从而退化后续SISR任务的性能。为了解决上述问题,本文提出了一种基于模型的盲人SISR方法,该方法在概率框架下,从噪声和模糊内核的角度精心模仿图像劣化。具体而言,而不是传统的i.i.d.噪声假设,基于补丁的非i.i.d。提出噪声模型来解决复杂的真实噪声,期望增加噪声表示模型的自由度。至于模糊内核,我们新建构建一个简洁但有效的内核生成器,并将其插入所提出的盲人SISR方法作为明确的内核(EKP)。为了解决所提出的模型,专门设计了理论上接地的蒙特卡罗EM算法。综合实验证明了我们对综合性和实时数据集的最新技术的方法的优越性。
translated by 谷歌翻译
Face Restoration (FR) aims to restore High-Quality (HQ) faces from Low-Quality (LQ) input images, which is a domain-specific image restoration problem in the low-level computer vision area. The early face restoration methods mainly use statistic priors and degradation models, which are difficult to meet the requirements of real-world applications in practice. In recent years, face restoration has witnessed great progress after stepping into the deep learning era. However, there are few works to study deep learning-based face restoration methods systematically. Thus, this paper comprehensively surveys recent advances in deep learning techniques for face restoration. Specifically, we first summarize different problem formulations and analyze the characteristic of the face image. Second, we discuss the challenges of face restoration. Concerning these challenges, we present a comprehensive review of existing FR methods, including prior based methods and deep learning-based methods. Then, we explore developed techniques in the task of FR covering network architectures, loss functions, and benchmark datasets. We also conduct a systematic benchmark evaluation on representative methods. Finally, we discuss future directions, including network designs, metrics, benchmark datasets, applications,etc. We also provide an open-source repository for all the discussed methods, which is available at https://github.com/TaoWangzj/Awesome-Face-Restoration.
translated by 谷歌翻译
Recent years have witnessed the unprecedented success of deep convolutional neural networks (CNNs) in single image super-resolution (SISR). However, existing CNN-based SISR methods mostly assume that a low-resolution (LR) image is bicubicly downsampled from a high-resolution (HR) image, thus inevitably giving rise to poor performance when the true degradation does not follow this assumption. Moreover, they lack scalability in learning a single model to nonblindly deal with multiple degradations. To address these issues, we propose a general framework with dimensionality stretching strategy that enables a single convolutional super-resolution network to take two key factors of the SISR degradation process, i.e., blur kernel and noise level, as input. Consequently, the super-resolver can handle multiple and even spatially variant degradations, which significantly improves the practicability. Extensive experimental results on synthetic and real LR images show that the proposed convolutional super-resolution network not only can produce favorable results on multiple degradations but also is computationally efficient, providing a highly effective and scalable solution to practical SISR applications.
translated by 谷歌翻译
Discriminative model learning for image denoising has been recently attracting considerable attentions due to its favorable denoising performance. In this paper, we take one step forward by investigating the construction of feed-forward denoising convolutional neural networks (DnCNNs) to embrace the progress in very deep architecture, learning algorithm, and regularization method into image denoising. Specifically, residual learning and batch normalization are utilized to speed up the training process as well as boost the denoising performance. Different from the existing discriminative denoising models which usually train a specific model for additive white Gaussian noise (AWGN) at a certain noise level, our DnCNN model is able to handle Gaussian denoising with unknown noise level (i.e., blind Gaussian denoising). With the residual learning strategy, DnCNN implicitly removes the latent clean image in the hidden layers. This property motivates us to train a single DnCNN model to tackle with several general image denoising tasks such as Gaussian denoising, single image super-resolution and JPEG image deblocking. Our extensive experiments demonstrate that our DnCNN model can not only exhibit high effectiveness in several general image denoising tasks, but also be efficiently implemented by benefiting from GPU computing.
translated by 谷歌翻译
现实世界图像超分辨率(SR)的关键挑战是在低分辨率(LR)图像中恢复具有复杂未知降解(例如,下采样,噪声和压缩)的缺失细节。大多数以前的作品还原图像空间中的此类缺失细节。为了应对自然图像的高度多样性,他们要么依靠难以训练和容易训练和伪影的不稳定的甘体,要么诉诸于通常不可用的高分辨率(HR)图像中的明确参考。在这项工作中,我们提出了匹配SR(FEMASR)的功能,该功能在更紧凑的特征空间中恢复了现实的HR图像。与图像空间方法不同,我们的FEMASR通过将扭曲的LR图像{\ IT特征}与我们预读的HR先验中的无失真性HR对应物匹配来恢复HR图像,并解码匹配的功能以获得现实的HR图像。具体而言,我们的人力资源先验包含一个离散的特征代码簿及其相关的解码器,它们在使用量化的生成对抗网络(VQGAN)的HR图像上预估计。值得注意的是,我们在VQGAN中结合了一种新型的语义正则化,以提高重建图像的质量。对于功能匹配,我们首先提取由LR编码器组成的LR编码器的LR功能,然后遵循简单的最近邻居策略,将其与预读的代码簿匹配。特别是,我们为LR编码器配备了与解码器的残留快捷方式连接,这对于优化功能匹配损耗至关重要,还有助于补充可能的功能匹配错误。实验结果表明,我们的方法比以前的方法产生更现实的HR图像。代码以\ url {https://github.com/chaofengc/femasr}发布。
translated by 谷歌翻译
Convolutional Neural Network (CNN)-based image super-resolution (SR) has exhibited impressive success on known degraded low-resolution (LR) images. However, this type of approach is hard to hold its performance in practical scenarios when the degradation process is unknown. Despite existing blind SR methods proposed to solve this problem using blur kernel estimation, the perceptual quality and reconstruction accuracy are still unsatisfactory. In this paper, we analyze the degradation of a high-resolution (HR) image from image intrinsic components according to a degradation-based formulation model. We propose a components decomposition and co-optimization network (CDCN) for blind SR. Firstly, CDCN decomposes the input LR image into structure and detail components in feature space. Then, the mutual collaboration block (MCB) is presented to exploit the relationship between both two components. In this way, the detail component can provide informative features to enrich the structural context and the structure component can carry structural context for better detail revealing via a mutual complementary manner. After that, we present a degradation-driven learning strategy to jointly supervise the HR image detail and structure restoration process. Finally, a multi-scale fusion module followed by an upsampling layer is designed to fuse the structure and detail features and perform SR reconstruction. Empowered by such degradation-based components decomposition, collaboration, and mutual optimization, we can bridge the correlation between component learning and degradation modelling for blind SR, thereby producing SR results with more accurate textures. Extensive experiments on both synthetic SR datasets and real-world images show that the proposed method achieves the state-of-the-art performance compared to existing methods.
translated by 谷歌翻译
在各种基于学习的图像恢复任务(例如图像降解和图像超分辨率)中,降解表示形式被广泛用于建模降解过程并处理复杂的降解模式。但是,在基于学习的图像deblurring中,它们的探索程度较低,因为在现实世界中挑战性的情况下,模糊内核估计不能很好地表现。我们认为,对于图像降低的降解表示形式是特别必要的,因为模糊模式通常显示出比噪声模式或高频纹理更大的变化。在本文中,我们提出了一个框架来学习模糊图像的空间自适应降解表示。提出了一种新颖的联合图像re毁和脱蓝色的学习过程,以提高降解表示的表现力。为了使学习的降解表示有效地启动和降解,我们提出了一个多尺度退化注入网络(MSDI-NET),以将它们集成到神经网络中。通过集成,MSDI-NET可以适应各种复杂的模糊模式。 GoPro和Realblur数据集上的实验表明,我们提出的具有学识渊博的退化表示形式的Deblurring框架优于最先进的方法,具有吸引人的改进。该代码在https://github.com/dasongli1/learning_degradation上发布。
translated by 谷歌翻译
经典图像恢复算法使用各种前瞻性,无论是明确的还是明确的。他们的前沿是手工设计的,它们的相应权重是启发式分配的。因此,深度学习方法通​​常会产生优异的图像恢复质量。然而,深度网络是能够诱导强烈且难以预测的幻觉。在学习图像时,网络隐含地学会联合忠于观察到的数据;然后是不可能的原始数据和下游的幻觉数据的分离。这限制了它们在图像恢复中的广泛采用。此外,通常是降解模型过度装备的受害者的幻觉部分。我们提出了一种具有解耦的网络先前的幻觉和数据保真度的方法。我们将我们的框架称为贝叶斯队的生成先前(BigPrior)的集成。我们的方法植根于贝叶斯框架中,并将其紧密连接到经典恢复方法。实际上,它可以被视为大型经典恢复算法的概括。我们使用网络反转来从生成网络中提取图像先前信息。我们表明,在图像着色,染色和去噪,我们的框架始终如一地提高了反演结果。我们的方法虽然部分依赖于生成网络反演的质量,具有竞争性的监督和任务特定的恢复方法。它还提供了一种额外的公制,其阐述了每像素的先前依赖程度相对于数据保真度。
translated by 谷歌翻译
盲人恢复通常会遇到各种规模的面孔输入,尤其是在现实世界中。但是,当前的大多数作品都支持特定的规模面,这限制了其在现实情况下的应用能力。在这项工作中,我们提出了一个新颖的尺度感知盲人面部修复框架,名为FaceFormer,该框架将面部特征恢复作为比例感知转换。所提出的面部特征上采样(FFUP)模块基于原始的比例比例动态生成UPSMPLING滤波器,这有助于我们的网络适应任意面部尺度。此外,我们进一步提出了面部特征嵌入(FFE)模块,该模块利用变压器来层次提取面部潜在的多样性和鲁棒性。因此,我们的脸部形式实现了富裕性和稳健性,恢复了面部的面孔,对面部成分具有现实和对称的细节。广泛的实验表明,我们提出的使用合成数据集训练的方法比当前的最新图像更好地推广到天然低质量的图像。
translated by 谷歌翻译
极度依赖于从划痕的模型的降级或优化的降解或优化的迭代估计,现有的盲超分辨率(SR)方法通常是耗时和效率较低,因为退化的估计从盲初始化进行并且缺乏可解释降解前沿。为了解决它,本文提出了一种使用端到端网络的盲SR的过渡学习方法,没有任何额外的推断中的额外迭代,并探讨了未知降级的有效表示。首先,我们分析并证明降解的过渡性作为可解释的先前信息,以间接推断出未知的降解模型,包括广泛使用的添加剂和卷曲降解。然后,我们提出了一种新颖的过渡性学习方法,用于盲目超分辨率(TLSR),通过自适应地推断过渡转换功能来解决未知的降级而没有推断的任何迭代操作。具体地,端到端TLSR网络包括一定程度的过渡性(点)估计网络,同一性特征提取网络和过渡学习模块。对盲人SR任务的定量和定性评估表明,拟议的TLSR实现了优异的性能,并且对最先进的盲人SR方法的复杂性较少。该代码可在github.com/yuanfeihuang/tlsr获得。
translated by 谷歌翻译
Deep convolutional networks have become a popular tool for image generation and restoration. Generally, their excellent performance is imputed to their ability to learn realistic image priors from a large number of example images. In this paper, we show that, on the contrary, the structure of a generator network is sufficient to capture a great deal of low-level image statistics prior to any learning. In order to do so, we show that a randomly-initialized neural network can be used as a handcrafted prior with excellent results in standard inverse problems such as denoising, superresolution, and inpainting. Furthermore, the same prior can be used to invert deep neural representations to diagnose them, and to restore images based on flash-no flash input pairs.
translated by 谷歌翻译
我们表明,诸如Stylegan和Biggan之类的预训练的生成对抗网络(GAN)可以用作潜在银行,以提高图像超分辨率的性能。尽管大多数现有面向感知的方法试图通过以对抗性损失学习来产生现实的产出,但我们的方法,即生成的潜在银行(GLEAN),通过直接利用预先训练的gan封装的丰富而多样的先验来超越现有实践。但是,与需要在运行时需要昂贵的图像特定优化的普遍的GAN反演方法不同,我们的方法只需要单个前向通行证才能修复。可以轻松地将Glean合并到具有多分辨率Skip连接的简单编码器银行decoder架构中。采用来自不同生成模型的先验,可以将收集到各种类别(例如人的面孔,猫,建筑物和汽车)。我们进一步提出了一个轻巧的Glean,名为Lightglean,该版本仅保留Glean中的关键组成部分。值得注意的是,Lightglean仅由21%的参数和35%的拖鞋组成,同时达到可比的图像质量。我们将方法扩展到不同的任务,包括图像着色和盲图恢复,广泛的实验表明,与现有方法相比,我们提出的模型表现出色。代码和模型可在https://github.com/open-mmlab/mmediting上找到。
translated by 谷歌翻译
机器学习模型通常培训端到端和监督设置,使用配对(输入,输出)数据。示例包括最近的超分辨率方法,用于在(低分辨率,高分辨率)图像上培训。然而,这些端到端的方法每当输入中存在分布偏移时需要重新训练(例如,夜间图像VS日光)或相关的潜在变量(例如,相机模糊或手动运动)。在这项工作中,我们利用最先进的(SOTA)生成模型(这里是Stylegan2)来构建强大的图像前提,这使得贝叶斯定理应用于许多下游重建任务。我们的方法是通过生成模型(BRGM)的贝叶斯重建,使用单个预先训练的发生器模型来解决不同的图像恢复任务,即超级分辨率和绘画,通过与不同的前向腐败模型相结合。我们将发电机模型的重量保持固定,并通过估计产生重建图像的输入潜在的跳过载体来重建图像来估计图像。我们进一步使用变分推理来近似潜伏向量的后部分布,我们对多种解决方案进行采样。我们在三个大型和多样化的数据集中展示了BRGM:(i)来自Flick的60,000个图像面向高质量的数据集(II)来自MIMIC III的高质量数据集(II)240,000胸X射线,(III)的组合收集5脑MRI数据集,具有7,329个扫描。在所有三个数据集和没有任何DataSet特定的HyperParameter调整,我们的简单方法会在超级分辨率和绘画上对当前的特定任务最先进的方法产生性能竞争力,同时更加稳定,而不需要任何培训。我们的源代码和预先训练的型号可在线获取:https://razvanmarinescu.github.io/brgm/。
translated by 谷歌翻译
盲级超分辨率(SR)旨在从低分辨率(LR)图像中恢复高质量的视觉纹理,通常通过下采样模糊内核和添加剂噪声来降解。由于现实世界中复杂的图像降解的挑战,此任务非常困难。现有的SR方法要么假定预定义的模糊内核或固定噪声,这限制了这些方法在具有挑战性的情况下。在本文中,我们提出了一个用于盲目超级分辨率(DMSR)的降解引导的元修复网络,该网络促进了真实病例的图像恢复。 DMSR由降解提取器和元修复模块组成。萃取器估计LR输入中的降解,并指导元恢复模块以预测恢复参数的恢复参数。 DMSR通过新颖的降解一致性损失和重建损失共同优化。通过这样的优化,DMSR在三个广泛使用的基准上以很大的边距优于SOTA。一项包括16个受试者的用户研究进一步验证了现实世界中的盲目SR任务中DMSR的优势。
translated by 谷歌翻译
最近,基于深度学习的图像降级方法在测试数据上具有与训练集相同的测试数据的有希望的性能,在该数据中,已经学习了基于合成或收集的现实世界训练数据的各种denoising模型。但是,在处理真实世界的嘈杂图像时,Denoising的性能仍然受到限制。在本文中,我们提出了一种简单而有效的贝叶斯深集合(BDE)方法,用于真实世界图像denoising,其中可以融合使用各种训练数据设置进行预训练的几位代表性的深层Denoiser,以提高稳健性。 BDE的基础是,现实世界的图像噪声高度取决于信号依赖性,并且在现实世界中的嘈杂图像中的异质噪声可以由不同的Deoisiser分别处理。特别是,我们将受过良好训练的CBDNET,NBNET,HINET,UFORFORMER和GMSNET进入Denoiser池,并采用U-NET来预测Pixel的加权图以融合这些DeOisiser。引入了贝叶斯深度学习策略,而不是仅仅学习像素的加权地图,而是为了预测加权不确定性和加权图,可以通过该策略来建模预测差异,以改善现实世界中的嘈杂图像的鲁棒性。广泛的实验表明,可以通过融合现有的DINOISER而不是训练一个以昂贵的成本来训练一个大的Denoiser来更好地消除现实世界的噪音。在DND数据集上,我们的BDE实现了 +0.28〜dB PSNR的增益,而不是最先进的denoising方法。此外,我们注意到,在应用于现实世界嘈杂的图像时,基于不同高斯噪声水平的BDE Denoiser优于最先进的CBDNET。此外,我们的BDE可以扩展到其他图像恢复任务,并在基准数据集上获得 +0.30dB, +0.18dB和 +0.12dB PSNR的收益,以分别用于图像去除图像,图像降低和单个图像超级分辨率。
translated by 谷歌翻译
图像超分辨率(SR)是重要的图像处理方法之一,可改善计算机视野领域的图像分辨率。在过去的二十年中,在超级分辨率领域取得了重大进展,尤其是通过使用深度学习方法。这项调查是为了在深度学习的角度进行详细的调查,对单像超分辨率的最新进展进行详细的调查,同时还将告知图像超分辨率的初始经典方法。该调查将图像SR方法分类为四个类别,即经典方法,基于学习的方法,无监督学习的方法和特定领域的SR方法。我们还介绍了SR的问题,以提供有关图像质量指标,可用参考数据集和SR挑战的直觉。使用参考数据集评估基于深度学习的方法。一些审查的最先进的图像SR方法包括增强的深SR网络(EDSR),周期循环gan(Cincgan),多尺度残留网络(MSRN),Meta残留密度网络(META-RDN) ,反复反射网络(RBPN),二阶注意网络(SAN),SR反馈网络(SRFBN)和基于小波的残留注意网络(WRAN)。最后,这项调查以研究人员将解决SR的未来方向和趋势和开放问题的未来方向和趋势。
translated by 谷歌翻译