在各种基于学习的图像恢复任务(例如图像降解和图像超分辨率)中,降解表示形式被广泛用于建模降解过程并处理复杂的降解模式。但是,在基于学习的图像deblurring中,它们的探索程度较低,因为在现实世界中挑战性的情况下,模糊内核估计不能很好地表现。我们认为,对于图像降低的降解表示形式是特别必要的,因为模糊模式通常显示出比噪声模式或高频纹理更大的变化。在本文中,我们提出了一个框架来学习模糊图像的空间自适应降解表示。提出了一种新颖的联合图像re毁和脱蓝色的学习过程,以提高降解表示的表现力。为了使学习的降解表示有效地启动和降解,我们提出了一个多尺度退化注入网络(MSDI-NET),以将它们集成到神经网络中。通过集成,MSDI-NET可以适应各种复杂的模糊模式。 GoPro和Realblur数据集上的实验表明,我们提出的具有学识渊博的退化表示形式的Deblurring框架优于最先进的方法,具有吸引人的改进。该代码在https://github.com/dasongli1/learning_degradation上发布。
translated by 谷歌翻译
大多数现有的基于深度学习的单图像动态场景盲目脱毛(SIDSBD)方法通常设计深网络,以直接从一个输入的运动模糊图像中直接删除空间变化的运动模糊,而无需模糊的内核估计。在本文中,受投射运动路径模糊(PMPB)模型和可变形卷积的启发,我们提出了一个新颖的约束可变形的卷积网络(CDCN),以进行有效的单图像动态场景,同时实现了准确的空间变化,以及仅观察到的运动模糊图像的高质量图像恢复。在我们提出的CDCN中,我们首先构建了一种新型的多尺度多级多输入多输出(MSML-MIMO)编码器架构,以提高功能提取能力。其次,与使用多个连续帧的DLVBD方法不同,提出了一种新颖的约束可变形卷积重塑(CDCR)策略,其中首先将可变形的卷积应用于输入的单运动模糊图像的模糊特征,用于学习学习的抽样点,以学习学习的采样点每个像素的运动模糊内核类似于PMPB模型中摄像机震动的运动密度函数的估计,然后提出了一种基于PMPB的新型重塑损耗函数来限制学习的采样点收敛,这可以使得可以使得可以使其产生。学习的采样点与每个像素的相对运动轨迹匹配,并促进空间变化的运动模糊内核估计的准确性。
translated by 谷歌翻译
夜间摄影通常由于昏暗的环境和长期使用而遭受弱光和模糊问题。尽管现有的光增强和脱毛方法可以单独解决每个问题,但一系列此类方法不能和谐地适应可见性和纹理的共同降解。训练端到端网络也是不可行的,因为没有配对数据可以表征低光和模糊的共存。我们通过引入新的数据合成管道来解决该问题,该管道对现实的低光模糊降解进行建模。使用管道,我们介绍了第一个用于关节低光增强和去皮的大型数据集。数据集,LOL-BLUR,包含12,000个低Blur/正常出现的对,在不同的情况下具有不同的黑暗和运动模糊。我们进一步提出了一个名为LEDNET的有效网络,以执行关节弱光增强和脱毛。我们的网络是独一无二的,因为它是专门设计的,目的是考虑两个相互连接的任务之间的协同作用。拟议的数据集和网络都为这项具有挑战性的联合任务奠定了基础。广泛的实验证明了我们方法对合成和现实数据集的有效性。
translated by 谷歌翻译
Convolutional Neural Network (CNN)-based image super-resolution (SR) has exhibited impressive success on known degraded low-resolution (LR) images. However, this type of approach is hard to hold its performance in practical scenarios when the degradation process is unknown. Despite existing blind SR methods proposed to solve this problem using blur kernel estimation, the perceptual quality and reconstruction accuracy are still unsatisfactory. In this paper, we analyze the degradation of a high-resolution (HR) image from image intrinsic components according to a degradation-based formulation model. We propose a components decomposition and co-optimization network (CDCN) for blind SR. Firstly, CDCN decomposes the input LR image into structure and detail components in feature space. Then, the mutual collaboration block (MCB) is presented to exploit the relationship between both two components. In this way, the detail component can provide informative features to enrich the structural context and the structure component can carry structural context for better detail revealing via a mutual complementary manner. After that, we present a degradation-driven learning strategy to jointly supervise the HR image detail and structure restoration process. Finally, a multi-scale fusion module followed by an upsampling layer is designed to fuse the structure and detail features and perform SR reconstruction. Empowered by such degradation-based components decomposition, collaboration, and mutual optimization, we can bridge the correlation between component learning and degradation modelling for blind SR, thereby producing SR results with more accurate textures. Extensive experiments on both synthetic SR datasets and real-world images show that the proposed method achieves the state-of-the-art performance compared to existing methods.
translated by 谷歌翻译
Image restoration tasks demand a complex balance between spatial details and high-level contextualized information while recovering images. In this paper, we propose a novel synergistic design that can optimally balance these competing goals. Our main proposal is a multi-stage architecture, that progressively learns restoration functions for the degraded inputs, thereby breaking down the overall recovery process into more manageable steps. Specifically, our model first learns the contextualized features using encoder-decoder architectures and later combines them with a high-resolution branch that retains local information. At each stage, we introduce a novel per-pixel adaptive design that leverages in-situ supervised attention to reweight the local features. A key ingredient in such a multi-stage architecture is the information exchange between different stages. To this end, we propose a twofaceted approach where the information is not only exchanged sequentially from early to late stages, but lateral connections between feature processing blocks also exist to avoid any loss of information. The resulting tightly interlinked multi-stage architecture, named as MPRNet, delivers strong performance gains on ten datasets across a range of tasks including image deraining, deblurring, and denoising. The source code and pre-trained models are available at https://github.com/swz30/MPRNet.
translated by 谷歌翻译
Non-uniform blind deblurring for general dynamic scenes is a challenging computer vision problem as blurs arise not only from multiple object motions but also from camera shake, scene depth variation. To remove these complicated motion blurs, conventional energy optimization based methods rely on simple assumptions such that blur kernel is partially uniform or locally linear. Moreover, recent machine learning based methods also depend on synthetic blur datasets generated under these assumptions. This makes conventional deblurring methods fail to remove blurs where blur kernel is difficult to approximate or parameterize (e.g. object motion boundaries). In this work, we propose a multi-scale convolutional neural network that restores sharp images in an end-to-end manner where blur is caused by various sources. Together, we present multiscale loss function that mimics conventional coarse-to-fine approaches. Furthermore, we propose a new large-scale dataset that provides pairs of realistic blurry image and the corresponding ground truth sharp image that are obtained by a high-speed camera. With the proposed model trained on this dataset, we demonstrate empirically that our method achieves the state-of-the-art performance in dynamic scene deblurring not only qualitatively, but also quantitatively.
translated by 谷歌翻译
放映摄像头(UDC)已被广泛利用,以帮助智能手机实现全屏显示。但是,由于屏幕不可避免地会影响光传播过程,因此UDC系统捕获的图像通常包含耀斑,雾霾,模糊和噪声。特别是,UDC图像中的耀斑和模糊可能会严重恶化高动态范围(HDR)场景的用户体验。在本文中,我们提出了一个新的深层模型,即UDC-UNET,以解决HDR场景中已知点扩展功能(PSF)的UDC图像恢复问题。在已知UDC系统的点扩散函数(PSF)的前提下,我们将UDC图像恢复视为非盲图像恢复问题,并提出了一种基于学习的新方法。我们的网络由三个部分组成,包括使用多尺度信息的U形基础网络,一个条件分支以执行空间变体调制以及一个内核分支,以提供给定PSF的先验知识。根据HDR数据的特征,我们还设计了音调映射损失,以稳定网络优化并获得更好的视觉质量。实验结果表明,所提出的UDC-UNET在定量和定性比较方面优于最新方法。我们的方法赢得了MIPI Challenge的UDC图像修复轨道的第二名。代码将公开可用。
translated by 谷歌翻译
本文提出了图像恢复的新变异推理框架和一个卷积神经网络(CNN)结构,该结构可以解决所提出的框架所描述的恢复问题。较早的基于CNN的图像恢复方法主要集中在网络体系结构设计或培训策略上,具有非盲方案,其中已知或假定降解模型。为了更接近现实世界的应用程序,CNN还接受了整个数据集的盲目培训,包括各种降解。然而,给定有多样化的图像的高质量图像的条件分布太复杂了,无法通过单个CNN学习。因此,也有一些方法可以提供其他先验信息来培训CNN。与以前的方法不同,我们更多地专注于基于贝叶斯观点以及如何重新重新重构目标的恢复目标。具体而言,我们的方法放松了原始的后推理问题,以更好地管理子问题,因此表现得像分裂和互动方案。结果,与以前的框架相比,提出的框架提高了几个恢复问题的性能。具体而言,我们的方法在高斯denoising,现实世界中的降噪,盲图超级分辨率和JPEG压缩伪像减少方面提供了最先进的性能。
translated by 谷歌翻译
In single image deblurring, the "coarse-to-fine" scheme, i.e. gradually restoring the sharp image on different resolutions in a pyramid, is very successful in both traditional optimization-based methods and recent neural-networkbased approaches. In this paper, we investigate this strategy and propose a Scale-recurrent Network (SRN-DeblurNet) for this deblurring task. Compared with the many recent learning-based approaches in [25], it has a simpler network structure, a smaller number of parameters and is easier to train. We evaluate our method on large-scale deblurring datasets with complex motion. Results show that our method can produce better quality results than state-of-thearts, both quantitatively and qualitatively.
translated by 谷歌翻译
在本文中,我们呈现了UFFORER,一种用于图像恢复的有效和高效的变换器架构,其中我们使用变压器块构建分层编码器解码器网络。在UFFAR中,有两个核心设计。首先,我们介绍了一个新颖的本地增强型窗口(Lewin)变压器块,其执行基于窗口的自我关注而不是全局自我关注。它显着降低了高分辨率特征映射的计算复杂性,同时捕获本地上下文。其次,我们提出了一种以多尺度空间偏置的形式提出了一种学习的多尺度恢复调制器,以调整UFFORER解码器的多个层中的特征。我们的调制器展示了卓越的能力,用于恢复各种图像恢复任务的详细信息,同时引入边缘额外参数和计算成本。通过这两个设计提供支持,UFFORER享有高能力,可以捕获本地和全局依赖性的图像恢复。为了评估我们的方法,在几种图像恢复任务中进行了广泛的实验,包括图像去噪,运动脱棕,散焦和污染物。没有钟声和口哨,与最先进的算法相比,我们的UFormer实现了卓越的性能或相当的性能。代码和模型可在https://github.com/zhendongwang6/uformer中找到。
translated by 谷歌翻译
在本文中,我们考虑了Defocus图像去缩合中的问题。以前的经典方法遵循两步方法,即首次散焦映射估计,然后是非盲目脱毛。在深度学习时代,一些研究人员试图解决CNN的这两个问题。但是,代表模糊级别的Defocus图的简单串联导致了次优性能。考虑到Defocus Blur的空间变体特性和Defocus Map中指示的模糊级别,我们采用Defocus Map作为条件指导来调整输入模糊图像而不是简单串联的特征。然后,我们提出了一个基于Defocus图的空间调制的简单但有效的网络。为了实现这一目标,我们设计了一个由三个子网络组成的网络,包括DeFocus Map估计网络,该网络将DeFocus Map编码为条件特征的条件网络以及根据条件功能执行空间动态调制的DeFocus Deblurring网络。此外,空间动态调制基于仿射变换函数,以调整输入模糊图像的特征。实验结果表明,与常用的公共测试数据集中的现有最新方法相比,我们的方法可以实现更好的定量和定性评估性能。
translated by 谷歌翻译
盲图修复(IR)是计算机视觉中常见但充满挑战的问题。基于经典模型的方法和最新的深度学习(DL)方法代表了有关此问题的两种不同方法,每种方法都有自己的优点和缺点。在本文中,我们提出了一种新颖的盲图恢复方法,旨在整合它们的两种优势。具体而言,我们为盲IR构建了一个普通的贝叶斯生成模型,该模型明确描绘了降解过程。在此提出的模型中,PICEL的非I.I.D。高斯分布用于适合图像噪声。它的灵活性比简单的I.I.D。在大多数常规方法中采用的高斯或拉普拉斯分布,以处理图像降解中包含的更复杂的噪声类型。为了解决该模型,我们设计了一个变异推理算法,其中所有预期的后验分布都被参数化为深神经网络,以提高其模型能力。值得注意的是,这种推论算法诱导统一的框架共同处理退化估计和图像恢复的任务。此外,利用了前一种任务中估计的降解信息来指导后一种红外过程。对两项典型的盲型IR任务进行实验,即图像降解和超分辨率,表明所提出的方法比当前最新的方法实现了卓越的性能。
translated by 谷歌翻译
Recent years have witnessed the unprecedented success of deep convolutional neural networks (CNNs) in single image super-resolution (SISR). However, existing CNN-based SISR methods mostly assume that a low-resolution (LR) image is bicubicly downsampled from a high-resolution (HR) image, thus inevitably giving rise to poor performance when the true degradation does not follow this assumption. Moreover, they lack scalability in learning a single model to nonblindly deal with multiple degradations. To address these issues, we propose a general framework with dimensionality stretching strategy that enables a single convolutional super-resolution network to take two key factors of the SISR degradation process, i.e., blur kernel and noise level, as input. Consequently, the super-resolver can handle multiple and even spatially variant degradations, which significantly improves the practicability. Extensive experimental results on synthetic and real LR images show that the proposed convolutional super-resolution network not only can produce favorable results on multiple degradations but also is computationally efficient, providing a highly effective and scalable solution to practical SISR applications.
translated by 谷歌翻译
突发超级分辨率(SR)提供了从低质量图像恢复丰富细节的可能性。然而,由于实际应用中的低分辨率(LR)图像具有多种复杂和未知的降级,所以现有的非盲(例如,双臂)设计的网络通常导致恢复高分辨率(HR)图像的严重性能下降。此外,处理多重未对准的嘈杂的原始输入也是具有挑战性的。在本文中,我们解决了从现代手持设备获取的原始突发序列重建HR图像的问题。中央观点是一个内核引导策略,可以用两个步骤解决突发SR:内核建模和HR恢复。前者估计来自原始输入的突发内核,而后者基于估计的内核预测超分辨图像。此外,我们引入了内核感知可变形对准模块,其可以通过考虑模糊的前沿而有效地对准原始图像。对综合和现实世界数据集的广泛实验表明,所提出的方法可以在爆发SR问题中对最先进的性能进行。
translated by 谷歌翻译
图像DeBlurring旨在恢复模糊图像中的详细纹理信息或结构,这已成为许多计算机视觉任务中必不可少的一步。尽管已经提出了各种方法来处理图像去除问题,但大多数方法将模糊图像视为一个整体,并忽略了不同图像频率的特征。在本文中,我们提出了一种新方法,称为图像脱毛的多尺度频率分离网络(MSFS-NET)。 MSFS-NET将频率分离模块(FSM)引入编码器 - 模块网络体系结构中,以在多个尺度上捕获图像的低频和高频信息。然后,分别设计了一个循环一致性策略和对比度学习模块(CLM),以保留低频信息,并在Deblurring期间恢复高频信息。最后,不同量表的特征是通过跨尺度特征融合模块(CSFFM)融合的。基准数据集的广泛实验表明,所提出的网络可实现最先进的性能。
translated by 谷歌翻译
在文献中,粗细或缩放 - 重复性方法是从其低分辨率版本逐步恢复清洁图像,已成功用于单图像去孔。然而,现有方法的主要缺点是需要配对数据;即夏普尔图像对同一场景,这是一种复杂和繁琐的采集程序。此外,由于对损耗功能的强烈监督,此类网络的预先训练模型对训练期间的模糊强烈偏向,并且在推理时间内的新模糊内核面对时倾向于提供子最佳性能。为了解决上述问题,我们使用秤 - 自适应注意模块(Saam)提出了无监督的域特定的去孔。我们的网络不需要监督对进行训练,并且防夹机制主要由逆势丢失引导,从而使我们的网络适用于模糊功能的分布。给定模糊的输入图像,在训练期间我们的模型中使用相同图像的不同分辨率,Saam允许在整个分辨率上有效的信息流。对于特定规模的网络培训,Saam作为当前规模的函数参加较低的尺度功能。不同的消融研究表明,我们的粗细机制优于端到端无监督的模型,而Saam能够与文学中使用的注意力相比更好地参加。定性和定量比较(在无参考度量标准)表明我们的方法优于现有无监督的方法。
translated by 谷歌翻译
使用注意机制的深度卷积神经网络(CNN)在动态场景中取得了巨大的成功。在大多数这些网络中,只能通过注意图精炼的功能传递到下一层,并且不同层的注意力图彼此分开,这并不能充分利用来自CNN中不同层的注意信息。为了解决这个问题,我们引入了一种新的连续跨层注意传播(CCLAT)机制,该机制可以利用所有卷积层的分层注意信息。基于CCLAT机制,我们使用非常简单的注意模块来构建一个新型残留的密集注意融合块(RDAFB)。在RDAFB中,从上述RDAFB的输出中推断出的注意图和每一层直接连接到后续的映射,从而导致CRLAT机制。以RDAFB为基础,我们为动态场景Deblurring设计了一个名为RDAFNET的有效体系结构。基准数据集上的实验表明,所提出的模型的表现优于最先进的脱毛方法,并证明了CCLAT机制的有效性。源代码可在以下网址提供:https://github.com/xjmz6/rdafnet。
translated by 谷歌翻译
Face Restoration (FR) aims to restore High-Quality (HQ) faces from Low-Quality (LQ) input images, which is a domain-specific image restoration problem in the low-level computer vision area. The early face restoration methods mainly use statistic priors and degradation models, which are difficult to meet the requirements of real-world applications in practice. In recent years, face restoration has witnessed great progress after stepping into the deep learning era. However, there are few works to study deep learning-based face restoration methods systematically. Thus, this paper comprehensively surveys recent advances in deep learning techniques for face restoration. Specifically, we first summarize different problem formulations and analyze the characteristic of the face image. Second, we discuss the challenges of face restoration. Concerning these challenges, we present a comprehensive review of existing FR methods, including prior based methods and deep learning-based methods. Then, we explore developed techniques in the task of FR covering network architectures, loss functions, and benchmark datasets. We also conduct a systematic benchmark evaluation on representative methods. Finally, we discuss future directions, including network designs, metrics, benchmark datasets, applications,etc. We also provide an open-source repository for all the discussed methods, which is available at https://github.com/TaoWangzj/Awesome-Face-Restoration.
translated by 谷歌翻译
Existing convolutional neural networks (CNN) based image super-resolution (SR) methods have achieved impressive performance on bicubic kernel, which is not valid to handle unknown degradations in real-world applications. Recent blind SR methods suggest to reconstruct SR images relying on blur kernel estimation. However, their results still remain visible artifacts and detail distortion due to the estimation errors. To alleviate these problems, in this paper, we propose an effective and kernel-free network, namely DSSR, which enables recurrent detail-structure alternative optimization without blur kernel prior incorporation for blind SR. Specifically, in our DSSR, a detail-structure modulation module (DSMM) is built to exploit the interaction and collaboration of image details and structures. The DSMM consists of two components: a detail restoration unit (DRU) and a structure modulation unit (SMU). The former aims at regressing the intermediate HR detail reconstruction from LR structural contexts, and the latter performs structural contexts modulation conditioned on the learned detail maps at both HR and LR spaces. Besides, we use the output of DSMM as the hidden state and design our DSSR architecture from a recurrent convolutional neural network (RCNN) view. In this way, the network can alternatively optimize the image details and structural contexts, achieving co-optimization across time. Moreover, equipped with the recurrent connection, our DSSR allows low- and high-level feature representations complementary by observing previous HR details and contexts at every unrolling time. Extensive experiments on synthetic datasets and real-world images demonstrate that our method achieves the state-of-the-art against existing methods. The source code can be found at https://github.com/Arcananana/DSSR.
translated by 谷歌翻译
在本文中,我们研究了现实世界图像脱毛的问题,并考虑了改善深度图像脱布模型的性能的两个关键因素,即培训数据综合和网络体系结构设计。经过现有合成数据集训练的脱毛模型在由于域移位引起的真实模糊图像上的表现较差。为了减少合成和真实域之间的域间隙,我们提出了一种新颖的现实模糊合成管道来模拟摄像机成像过程。由于我们提出的合成方法,可以使现有的Deblurring模型更强大,以处理现实世界的模糊。此外,我们开发了一个有效的脱蓝色模型,该模型同时捕获特征域中的非本地依赖性和局部上下文。具体而言,我们将多路径变压器模块介绍给UNET架构,以进行丰富的多尺度功能学习。在三个现实世界数据集上进行的全面实验表明,所提出的Deblurring模型的性能优于最新方法。
translated by 谷歌翻译