当分布(ID)样品与分布外(OOD)样本之间存在差异时,对ID样品进行训练的深神经网络遭受了OOD样品的高信心预测。这主要是由无法使用的OOD样品引起的,以限制培训过程中的网络。为了提高深网的OOD敏感性,几种最先进的方法将其他现实世界数据集的样本作为OOD样本引入训练过程,并将手动确定的标签分配给这些OOD样本。但是,他们牺牲了分类准确性,因为OOD样品的不可靠标记会破坏ID分类。为了平衡ID的概括和OOD检测,要解决的主要挑战是使OOD样本与ID兼容,这在本文中由我们提议的\ textit {监督适应}方法解决,以定义OOD样本的适应性监督信息。首先,通过通过共同信息来测量ID样本及其标签之间的依赖关系,我们根据所有类别的负概率揭示了监督信息的形式。其次,在通过解决多个二进制回归问题来探索ID和OOD样本之间的数据相关性之后,我们估算了监督信息以使ID类更可分离。我们使用两个ID数据集和11个OOD数据集对四个高级网络体系结构进行实验,以证明我们的监督适应方法在实现ID分类能力和OOD检测能力方面的平衡效果。
translated by 谷歌翻译
In deep neural learning, a discriminator trained on in-distribution (ID) samples may make high-confidence predictions on out-of-distribution (OOD) samples. This triggers a significant matter for robust, trustworthy and safe deep learning. The issue is primarily caused by the limited ID samples observable in training the discriminator when OOD samples are unavailable. We propose a general approach for \textit{fine-tuning discriminators by implicit generators} (FIG). FIG is grounded on information theory and applicable to standard discriminators without retraining. It improves the ability of a standard discriminator in distinguishing ID and OOD samples by generating and penalizing its specific OOD samples. According to the Shannon entropy, an energy-based implicit generator is inferred from a discriminator without extra training costs. Then, a Langevin dynamic sampler draws specific OOD samples for the implicit generator. Lastly, we design a regularizer fitting the design principle of the implicit generator to induce high entropy on those generated OOD samples. The experiments on different networks and datasets demonstrate that FIG achieves the state-of-the-art OOD detection performance.
translated by 谷歌翻译
为了对分布样本进行分类,深层神经网络学习标签 - 歧义表示表示,但是,根据信息瓶颈,这不一定是分布歧视性的。因此,训练有素的网络可以为与分布样本不同的分布样本分配出意外的高信任预测。具体而言,网络从分布样本中提取与标签相关的信息,以学习标签 - 歧义表示表示,但丢弃了与标签相关的弱信息。因此,网络用最小标签敏感的信息作为分布样本将分布式样品视为分布样品。根据分布样本的不同信息性属性,双重表示学习(DRL)方法学习与分配样本的标签无关的分布不同的表示形式,并结合了标签和分布歧义性歧视性。检测到分布样本的表示。对于标签 - 歧义表示形式,DRL通过隐式约束构建了互补分布不同的表示表示,即整合了不同的中间表示,其中中间表示与标签 - 歧义表示表示具有更高的权重。实验表明,DRL的表现优于分布外检测的最新方法。
translated by 谷歌翻译
深度神经网络只会学会将分布输入映射到其在训练阶段的相应地面真实标签,而不会区分分配样本与分布情况。这是由于所有样品都是独立且分布相同而没有分布区别的假设。因此,从分布样品中学到的一个预处理的网络将分布的样本视为分布,并在测试阶段对它们进行高信心预测。为了解决这个问题,我们从培训分配样本附近分布中绘制出分布的样本,以学习拒绝对分数输入的预测。通过假设通过混合多个分发样品而生成的分布样本不会共享其组成部分相同的类别,从而引入了\ textit {跨级附近分布}。因此,我们通过从跨级附近分布中得出的分布样本对列表进行列表来提高预审慎的网络的可区分性,其中每个分布输入输入都对应于互补标签。各种内部/分布数据集的实验表明,所提出的方法在提高区分内部和分发样品的能力方面显着优于现有方法。
translated by 谷歌翻译
无法保证专家注释的培训数据的质量,甚至对于由分发样本组成的非IID数据(即,分布式和分布式样本都具有不同的分布),更是如此。 。专家可能会错误地注释与分布样本相同的分发样品,从而产生不可信的地面真相标签。学习这种非IID数据混合与不信任标签的分布样品混合在一起,既浅层和深度学习都有显着挑战,没有报告相关工作。可以识别样本的值得信赖的互补标签,指示其不属于哪些类,因为除分布外样品和分布外样品都不属于类别外,除了与地面真实标签相对应的类别。有了这个见解,我们提出了一种新颖的\ textit {灰色学习}方法,可以从非IID数据中学习具有分布式和分离外样品的非IID数据。由于训练样本的不确定分布,我们拒绝了低信心输入的互补标签,同时将高信心输入映射到培训中的地面真相标签。在统计学习理论的基础上,我们得出了概括误差,该误差表明灰色学习在非IID数据上实现了紧密的束缚。广泛的实验表明,我们的方法对可靠统计的替代方法提供了重大改进。
translated by 谷歌翻译
建立强大的确定性神经网络仍然是一个挑战。一方面,某些方法以降低某些情况下的分类准确性为代价改善了分布检测。另一方面,某些方法同时提高了分类准确性,不确定性估计和分布外检测,但以降低推理效率为代价。在本文中,我们提出了使用Dismax损失的培训确定性神经网络,这是对通常的软马克斯损失的倒入替换(即,线性输出层的组合,软磁性激活和交叉透射率损失) 。从Isomax+损失开始,我们根据所有原型的距离创建每个logit,而不仅仅是与正确类关联的logit。我们还引入了一种结合图像的机制,以构建所谓的分数概率正则化。此外,我们提出了一种快速训练后校准网络的方法。最后,我们提出一个复合分数以执行分布外检测。我们的实验表明,Dismax通常在分类准确性,不确定性估计和分布外检测方面同时优于当前方法,同时保持确定性的神经网络推断效率。重现结果的代码可在https://github.com/dlmacedo/distinction-maximization-loss上获得。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
本文重点介绍了用神经网络检测分配(OOD)样本的问题。在图像识别任务,训练过的分类往往给人高置信度的远离中分布(ID)数据输入图像,这大大限制了它在现实世界中的应用。为了减轻这个问题,我们提出了一个基于GaN的边界意识分类器(GBAC),用于生成仅包含大多数ID数据的关闭超空间。我们的方法基于传统的神经网分离特征空间作为几个不适合于ood检测的未闭合区域。与GBAC作为辅助模块,封闭的超空间分布以外的OOD数据将具有低得多的分数被分配,允许更有效的检测OOD同时维持分级性能。此外,我们提出了一种快速采样方法,用于产生躺在预先提及的闭合空间的边界上的硬度陈述。在几个数据集和神经网络架构上采取的实验承诺GBAC的有效性。
translated by 谷歌翻译
尽管具有明显的区分靶向分布样本的能力,但深度神经网络在检测异常分布数据方面的性能差。为了解决此缺陷,最先进的解决方案选择在离群值的辅助数据集上训练深网。这些辅助离群值的各种培训标准是根据启发式直觉提出的。但是,我们发现这些直观设计的离群训练标准可能会损害分布学习,并最终导致劣等的表现。为此,我们确定了分布不兼容的三个原因:矛盾的梯度,错误的可能性和分布变化。基于我们的新理解,我们通过调整深层模型和损耗函数的顶级设计,提出一种新的分布检测方法。我们的方法通过减少对分布特征的概率特征的干扰来实现分布兼容性。在几个基准上,我们的方法不仅可以实现最新的分布检测性能,而且还提高了分布精度。
translated by 谷歌翻译
在值得信赖的机器学习中,这是一个重要的问题,可以识别与分配任务无关的输入的分布(OOD)输入。近年来,已经提出了许多分布式检测方法。本文的目的是识别共同的目标以及确定不同OOD检测方法的隐式评分函数。我们专注于在培训期间使用替代OOD数据的方法,以学习在测试时概括为新的未见外部分布的OOD检测分数。我们表明,内部和(不同)外部分布之间的二元歧视等同于OOD检测问题的几种不同的公式。当与标准分类器以共同的方式接受培训时,该二进制判别器达到了类似于离群暴露的OOD检测性能。此外,我们表明,异常暴露所使用的置信损失具有隐式评分函数,在训练和测试外部分配相同的情况下,以非平凡的方式与理论上最佳评分功能有所不同,这又是类似于训练基于能量的OOD检测器或添加背景类时使用的一种。在实践中,当以完全相同的方式培训时,所有这些方法的性能类似。
translated by 谷歌翻译
Deep neural networks have attained remarkable performance when applied to data that comes from the same distribution as that of the training set, but can significantly degrade otherwise. Therefore, detecting whether an example is out-of-distribution (OoD) is crucial to enable a system that can reject such samples or alert users. Recent works have made significant progress on OoD benchmarks consisting of small image datasets. However, many recent methods based on neural networks rely on training or tuning with both in-distribution and out-of-distribution data. The latter is generally hard to define a-priori, and its selection can easily bias the learning. We base our work on a popular method ODIN 1 [21], proposing two strategies for freeing it from the needs of tuning with OoD data, while improving its OoD detection performance. We specifically propose to decompose confidence scoring as well as a modified input pre-processing method. We show that both of these significantly help in detection performance. Our further analysis on a larger scale image dataset shows that the two types of distribution shifts, specifically semantic shift and non-semantic shift, present a significant difference in the difficulty of the problem, providing an analysis of when ODIN-like strategies do or do not work.
translated by 谷歌翻译
异常检测任务在AI安全中起着至关重要的作用。处理这项任务存在巨大的挑战。观察结果表明,深度神经网络分类器通常倾向于以高信心将分布(OOD)输入分为分配类别。现有的工作试图通过在培训期间向分类器暴露于分类器时明确对分类器施加不确定性来解决问题。在本文中,我们提出了一种替代概率范式,该范式实际上对OOD检测任务既有用,又可行。特别是,我们在培训过程中施加了近距离和离群数据之间的统计独立性,以确保inlier数据在培训期间向深度估计器显示有关OOD数据的信息很少。具体而言,我们通过Hilbert-Schmidt独立标准(HSIC)估算了Inlier和离群数据之间的统计依赖性,并在培训期间对此类度量进行了惩罚。我们还将方法与推理期间的新型统计测试相关联,加上我们的原则动机。经验结果表明,我们的方法对各种基准测试的OOD检测是有效且可靠的。与SOTA模型相比,我们的方法在FPR95,AUROC和AUPR指标方面取得了重大改进。代码可用:\ url {https://github.com/jylins/hone}。
translated by 谷歌翻译
Data augmentation (DA) is a widely used technique for enhancing the training of deep neural networks. Recent DA techniques which achieve state-of-the-art performance always meet the need for diversity in augmented training samples. However, an augmentation strategy that has a high diversity usually introduces out-of-distribution (OOD) augmented samples and these samples consequently impair the performance. To alleviate this issue, we propose ReSmooth, a framework that firstly detects OOD samples in augmented samples and then leverages them. To be specific, we first use a Gaussian mixture model to fit the loss distribution of both the original and augmented samples and accordingly split these samples into in-distribution (ID) samples and OOD samples. Then we start a new training where ID and OOD samples are incorporated with different smooth labels. By treating ID samples and OOD samples unequally, we can make better use of the diverse augmented data. Further, we incorporate our ReSmooth framework with negative data augmentation strategies. By properly handling their intentionally created OOD samples, the classification performance of negative data augmentations is largely ameliorated. Experiments on several classification benchmarks show that ReSmooth can be easily extended to existing augmentation strategies (such as RandAugment, rotate, and jigsaw) and improve on them. Our code is available at https://github.com/Chenyang4/ReSmooth.
translated by 谷歌翻译
检测到分布输入对于在现实世界中安全部署机器学习模型至关重要。然而,已知神经网络遭受过度自信的问题,在该问题中,它们对分布和分布的输入的信心异常高。在这项工作中,我们表明,可以通过在训练中实施恒定的向量规范来通过logit归一化(logitnorm)(logitnorm)来缓解此问题。我们的方法是通过分析的激励,即logit的规范在训练过程中不断增加,从而导致过度自信的产出。因此,LogitNorm背后的关键思想是将网络优化期间输出规范的影响解散。通过LogitNorm培训,神经网络在分布数据和分布数据之间产生高度可区分的置信度得分。广泛的实验证明了LogitNorm的优势,在公共基准上,平均FPR95最高为42.30%。
translated by 谷歌翻译
开放式识别使深度神经网络(DNN)能够识别未知类别的样本,同时在已知类别的样本上保持高分类精度。基于自动编码器(AE)和原型学习的现有方法在处理这项具有挑战性的任务方面具有巨大的潜力。在这项研究中,我们提出了一种新的方法,称为类别特定的语义重建(CSSR),该方法整合了AE和原型学习的力量。具体而言,CSSR用特定于类的AE表示的歧管替代了原型点。与传统的基于原型的方法不同,CSSR在单个AE歧管上的每个已知类模型,并通过AE的重建误差来测量类归属感。特定于类的AE被插入DNN主链的顶部,并重建DNN而不是原始图像所学的语义表示。通过端到端的学习,DNN和AES互相促进,以学习歧视性和代表性信息。在多个数据集上进行的实验结果表明,所提出的方法在封闭式和开放式识别中都达到了出色的性能,并且非常简单且灵活地将其纳入现有框架中。
translated by 谷歌翻译
We present an approach to quantifying both aleatoric and epistemic uncertainty for deep neural networks in image classification, based on generative adversarial networks (GANs). While most works in the literature that use GANs to generate out-of-distribution (OoD) examples only focus on the evaluation of OoD detection, we present a GAN based approach to learn a classifier that produces proper uncertainties for OoD examples as well as for false positives (FPs). Instead of shielding the entire in-distribution data with GAN generated OoD examples which is state-of-the-art, we shield each class separately with out-of-class examples generated by a conditional GAN and complement this with a one-vs-all image classifier. In our experiments, in particular on CIFAR10, CIFAR100 and Tiny ImageNet, we improve over the OoD detection and FP detection performance of state-of-the-art GAN-training based classifiers. Furthermore, we also find that the generated GAN examples do not significantly affect the calibration error of our classifier and result in a significant gain in model accuracy.
translated by 谷歌翻译
检测到分布(OOD)数据是一项任务,它正在接受计算机视觉的深度学习领域越来越多的研究注意力。但是,通常在隔离任务上评估检测方法的性能,而不是考虑串联中的潜在下游任务。在这项工作中,我们检查了存在OOD数据(SCOD)的选择性分类。也就是说,检测OOD样本的动机是拒绝它们,以便降低它们对预测质量的影响。我们在此任务规范下表明,与仅在OOD检测时进行评估时,现有的事后方法的性能大不相同。这是因为如果ID数据被错误分类,将分布分配(ID)数据与OOD数据混合在一起的问题不再是一个问题。但是,正确和不正确的预测的ID数据中的汇合变得不受欢迎。我们还提出了一种新颖的SCOD,SoftMax信息保留(SIRC)的方法,该方法通过功能不足信息来增强基于软疗法的置信度得分,以便在不牺牲正确和错误的ID预测之间的分离的情况下,可以提高其识别OOD样品的能力。在各种成像网尺度数据集和卷积神经网络体系结构上进行的实验表明,SIRC能够始终如一地匹配或胜过SCOD的基线,而现有的OOD检测方法则无法做到。
translated by 谷歌翻译
已知现代深度神经网络模型将错误地将分布式(OOD)测试数据分类为具有很高信心的分数(ID)培训课程之一。这可能会对关键安全应用产生灾难性的后果。一种流行的缓解策略是训练单独的分类器,该分类器可以在测试时间检测此类OOD样本。在大多数实际设置中,在火车时间尚不清楚OOD的示例,因此,一个关键问题是:如何使用合成OOD样品来增加ID数据以训练这样的OOD检测器?在本文中,我们为称为CNC的OOD数据增强提出了一种新颖的复合腐败技术。 CNC的主要优点之一是,除了培训集外,它不需要任何固定数据。此外,与当前的最新技术(SOTA)技术不同,CNC不需要在测试时间进行反向传播或结合,从而使我们的方法在推断时更快。我们与过去4年中主要会议的20种方法进行了广泛的比较,表明,在OOD检测准确性和推理时间方面,使用基于CNC的数据增强训练的模型都胜过SOTA。我们包括详细的事后分析,以研究我们方法成功的原因,并确定CNC样本的较高相对熵和多样性是可能的原因。我们还通过对二维数据集进行零件分解分析提供理论见解,以揭示(视觉和定量),我们的方法导致ID类别周围的边界更紧密,从而更好地检测了OOD样品。源代码链接:https://github.com/cnc-ood
translated by 谷歌翻译
深度神经网络对各种任务取得了出色的性能,但它们具有重要问题:即使对于完全未知的样本,也有过度自信的预测。已经提出了许多研究来成功过滤出这些未知的样本,但它们仅考虑狭窄和特定的任务,称为错误分类检测,开放式识别或分布外检测。在这项工作中,我们认为这些任务应该被视为根本存在相同的问题,因为理想的模型应该具有所有这些任务的检测能力。因此,我们介绍了未知的检测任务,以先前的单独任务的整合,用于严格检查深度神经网络对广谱的广泛未知样品的检测能力。为此,构建了不同尺度上的统一基准数据集,并且存在现有流行方法的未知检测能力进行比较。我们发现深度集合始终如一地优于检测未知的其他方法;但是,所有方法只针对特定类型的未知方式成功。可重复的代码和基准数据集可在https://github.com/daintlab/unknown-detection-benchmarks上获得。
translated by 谷歌翻译
当训练数据集患有极端阶级失衡时,深度神经网络通常会表现不佳。最近的研究发现,以半监督的方式直接使用分布外数据(即开放式样本)培训将损害概括性能。在这项工作中,我们从理论上表明,从贝叶斯的角度来看,仍然可以利用分发数据来扩大少数群体。基于这种动机,我们提出了一种称为开放采样的新方法,该方法利用开放式嘈杂标签重新平衡培训数据集的班级先验。对于每个开放式实例,标签是​​从我们的预定义分布中取样的,该分布互补,与原始类先验的分布互补。我们从经验上表明,开放采样不仅可以重新平衡阶级先验,还鼓励神经网络学习可分离的表示。广泛的实验表明,我们提出的方法显着优于现有数据重新平衡方法,并可以提高现有最新方法的性能。
translated by 谷歌翻译