当训练数据集患有极端阶级失衡时,深度神经网络通常会表现不佳。最近的研究发现,以半监督的方式直接使用分布外数据(即开放式样本)培训将损害概括性能。在这项工作中,我们从理论上表明,从贝叶斯的角度来看,仍然可以利用分发数据来扩大少数群体。基于这种动机,我们提出了一种称为开放采样的新方法,该方法利用开放式嘈杂标签重新平衡培训数据集的班级先验。对于每个开放式实例,标签是​​从我们的预定义分布中取样的,该分布互补,与原始类先验的分布互补。我们从经验上表明,开放采样不仅可以重新平衡阶级先验,还鼓励神经网络学习可分离的表示。广泛的实验表明,我们提出的方法显着优于现有数据重新平衡方法,并可以提高现有最新方法的性能。
translated by 谷歌翻译
使用嘈杂的标签学习是一场实际上有挑战性的弱势监督。在现有文献中,开放式噪声总是被认为是有毒的泛化,类似于封闭式噪音。在本文中,我们经验证明,开放式嘈杂标签可能是无毒的,甚至有利于对固有的嘈杂标签的鲁棒性。灵感来自观察,我们提出了一种简单而有效的正则化,通过将具有动态噪声标签(ODNL)引入培训的开放式样本。使用ODNL,神经网络的额外容量可以在很大程度上以不干扰来自清洁数据的学习模式的方式消耗。通过SGD噪声的镜头,我们表明我们的方法引起的噪音是随机方向,无偏向,这可能有助于模型收敛到最小的最小值,具有卓越的稳定性,并强制执行模型以产生保守预测-of-分配实例。具有各种类型噪声标签的基准数据集的广泛实验结果表明,所提出的方法不仅提高了许多现有的强大算法的性能,而且即使在标签噪声设置中也能实现分配异点检测任务的显着改进。
translated by 谷歌翻译
检测到分布输入对于在现实世界中安全部署机器学习模型至关重要。然而,已知神经网络遭受过度自信的问题,在该问题中,它们对分布和分布的输入的信心异常高。在这项工作中,我们表明,可以通过在训练中实施恒定的向量规范来通过logit归一化(logitnorm)(logitnorm)来缓解此问题。我们的方法是通过分析的激励,即logit的规范在训练过程中不断增加,从而导致过度自信的产出。因此,LogitNorm背后的关键思想是将网络优化期间输出规范的影响解散。通过LogitNorm培训,神经网络在分布数据和分布数据之间产生高度可区分的置信度得分。广泛的实验证明了LogitNorm的优势,在公共基准上,平均FPR95最高为42.30%。
translated by 谷歌翻译
尽管对视觉识别任务进行了显着进展,但是当培训数据稀缺或高度不平衡时,深神经网络仍然易于普遍,使他们非常容易受到现实世界的例子。在本文中,我们提出了一种令人惊讶的简单且高效的方法来缓解此限制:使用纯噪声图像作为额外的训练数据。与常见使用添加剂噪声或对抗数据的噪声不同,我们通过直接训练纯无随机噪声图像提出了完全不同的视角。我们提出了一种新的分发感知路由批量归一化层(DAR-BN),除了同一网络内的自然图像之外,还可以在纯噪声图像上训练。这鼓励泛化和抑制过度装备。我们所提出的方法显着提高了不平衡的分类性能,从而获得了最先进的导致大量的长尾图像分类数据集(Cifar-10-LT,CiFar-100-LT,想象齿 - LT,和celeba-5)。此外,我们的方法非常简单且易于使用作为一般的新增强工具(在现有增强的顶部),并且可以在任何训练方案中结合。它不需要任何专门的数据生成或培训程序,从而保持培训快速高效
translated by 谷歌翻译
Deep learning algorithms can fare poorly when the training dataset suffers from heavy class-imbalance but the testing criterion requires good generalization on less frequent classes. We design two novel methods to improve performance in such scenarios. First, we propose a theoretically-principled label-distribution-aware margin (LDAM) loss motivated by minimizing a margin-based generalization bound. This loss replaces the standard cross-entropy objective during training and can be applied with prior strategies for training with class-imbalance such as re-weighting or re-sampling. Second, we propose a simple, yet effective, training schedule that defers re-weighting until after the initial stage, allowing the model to learn an initial representation while avoiding some of the complications associated with re-weighting or re-sampling. We test our methods on several benchmark vision tasks including the real-world imbalanced dataset iNaturalist 2018. Our experiments show that either of these methods alone can already improve over existing techniques and their combination achieves even better performance gains 1 .
translated by 谷歌翻译
人们对从长尾班级分布中学习的具有挑战性的视觉感知任务越来越兴趣。训练数据集中的极端类失衡使模型偏向于识别多数级数据而不是少数级数据。最近,已经提出了两个分支网络的双分支网络(DBN)框架。传统的分支和重新平衡分支用于提高长尾视觉识别的准确性。重新平衡分支使用反向采样器来生成类平衡的训练样本,以减轻由于类不平衡而减轻偏见。尽管该策略在处理偏见方面非常成功,但使用反向采样器进行培训可以降低表示形式的学习绩效。为了减轻这个问题,常规方法使用了精心设计的累积学习策略,在整个培训阶段,重新平衡分支的影响逐渐增加。在这项研究中,我们旨在开发一种简单而有效的方法,以不需要优化的累积学习而在不累积学习的情况下提高DBN的性能。我们设计了一种称为双边混合增强的简单数据增强方法,该方法将统一采样器中的一个样品与反向采样器中的另一个样品结合在一起,以产生训练样本。此外,我们介绍了阶级条件的温度缩放,从而减轻对拟议的DBN结构的多数级别的偏见。我们对广泛使用的长尾视觉识别数据集进行的实验表明,双边混合增加在改善DBN的表示性能方面非常有效,并且所提出的方法可以实现某些类别的先进绩效。
translated by 谷歌翻译
现有的分布(OOD)检测方法通常在具有平衡的类别分布的培训集中进行基准测试。但是,在实际应用程序中,培训集具有长尾分配是很常见的。在这项工作中,我们首先证明现有的OOD检测方法通常会在训练集分布式分布时遭受重大性能降解。通过分析,我们认为这是因为模型难以区分少数尾巴级分配样本与真实的OOD样本,从而使尾巴类更容易被错误地检测为OOD。为了解决这个问题,我们提出了部分和不对称的监督对比学习(PASCL),该学习明确鼓励该模型区分尾级分配样本和OOD样品。为了进一步提高分布分类的准确性,我们提出了辅助分支列式,该辅助分支列出了BN的两个单独分支和分类层分别用于异常检测和分布分类。直觉是,分布和OOD异常数据具有不同的基础分布。我们的方法的表现优于先前的最新方法$ 1.29 \%$,$ 1.45 \%$,$ 0.69 \%$ $ $ $ $ $ $异常检测误报(FPR)和$ 3.24 \%\%$,$ 4.06 \%$,$ 7.89 \%$ $ CIFAR10-LT,CIFAR100-LT和IMAGENET-LT的分布分类精度。代码和预培训模型可在https://github.com/amazon-research/long-tailed-ood-detection上找到。
translated by 谷歌翻译
少数族裔类的数据增强是长尾识别的有效策略,因此开发了大量方法。尽管这些方法都确保了样本数量的平衡,但是增强样品的质量并不总是令人满意的,识别且容易出现过度拟合,缺乏多样性,语义漂移等问题。对于这些问题,我们建议班级感知的大学启发了重新平衡学习(CAUIRR),以进行长尾识别,这使Universum具有班级感知的能力,可以从样本数量和质量中重新平衡个人少数族裔。特别是,我们从理论上证明,凯尔学到的分类器与从贝叶斯的角度从平衡状态下学到的那些人一致。此外,我们进一步开发了一种高阶混合方法,该方法可以自动生成类感知的Universum(CAU)数据,而无需诉诸任何外部数据。与传统的大学不同,此类产生的全球还考虑了域的相似性,阶级可分离性和样本多样性。基准数据集的广泛实验证明了我们方法的令人惊讶的优势,尤其是与最先进的方法相比,少数族裔类别的TOP1准确性提高了1.9%6%。
translated by 谷歌翻译
现实世界数据通常存在长尾分布。对不平衡数据的培训倾向于呈现神经网络在头部上表现良好,而尾部课程则更加差。尾班的培训实例的严重稀疏性是主要挑战,这导致培训期间的偏见分配估计。丰富的努力已经致力于改善挑战,包括数据重新采样和综合尾班的新培训实例。然而,没有先前的研究已经利用了从头课程转移到尾班的可转让知识,以校准尾舱的分布。在本文中,我们假设可以通过类似的头部级别来丰富尾部类,并提出一种名为标签感知分布校准Ladc的新型分布校准方法。 Ladc从相关的头部课程转移统计数据以推断尾部课程的分布。从校准分布的采样进一步促进重新平衡分类器。图像和文本的实验和文本长尾数据集表明,LADC显着优于现有方法。可视化还显示LADC提供更准确的分布估计。
translated by 谷歌翻译
深度神经网络的成功在很大程度上取决于大量高质量注释的数据的可用性,但是这些数据很难或昂贵。由此产生的标签可能是类别不平衡,嘈杂或人类偏见。从不完美注释的数据集中学习无偏分类模型是一项挑战,我们通常会遭受过度拟合或不足的折磨。在这项工作中,我们彻底研究了流行的软马克斯损失和基于保证金的损失,并提供了一种可行的方法来加强通过最大化最小样本余量来限制的概括误差。我们为此目的进一步得出了最佳条件,该条件指示了类原型应锚定的方式。通过理论分析的激励,我们提出了一种简单但有效的方法,即原型锚定学习(PAL),可以轻松地将其纳入各种基于学习的分类方案中以处理不完美的注释。我们通过对合成和现实世界数据集进行广泛的实验来验证PAL对班级不平衡学习和降低噪声学习的有效性。
translated by 谷歌翻译
类别不平衡数据的问题在于,由于少数类别的数据缺乏数据,分类器的泛化性能劣化。在本文中,我们提出了一种新的少数民族过度采样方法,通过利用大多数类作为背景图像的丰富背景来增加多元化的少数民族样本。为了使少数民族样本多样化,我们的主要思想是将前景补丁从少数级别粘贴到来自具有富裕环境的多数类的背景图像。我们的方法很简单,可以轻松地与现有的长尾识别方法结合。我们通过广泛的实验和消融研究证明了提出的过采样方法的有效性。如果没有任何架构更改或复杂的算法,我们的方法在各种长尾分类基准上实现了最先进的性能。我们的代码将在链接上公开提供。
translated by 谷歌翻译
视觉识别任务中的长尾类分布对于如何处理头部和尾部类之间的偏置预测,即,模型倾向于将尾部类作为头部类进行分类。虽然现有的研究专注于数据重采采样和损失函数工程,但在本文中,我们采取了不同的视角:分类利润率。我们研究边距和注册之间的关系(分类得分)并经验遵守偏置边缘,并且偏置的Logits是正相关的。我们提出MARC,一个简单但有效的边缘校准函数,用于动态校准偏置边缘的偏置利润。我们通过对普通的长尾基准测试进行了广泛的实验,包括CIFAR-LT,Imagenet-LT,LT,以及不适物 - LT的广泛实验。实验结果表明,我们的MARC在这些基准上实现了有利的结果。此外,Marc只需三行代码即可实现。我们希望这种简单的方法能够激励人们重新思考偏置的边距和偏见的长尾视觉识别标识。
translated by 谷歌翻译
对于在开放世界中部署的机器学习模型是必不可少的。最近,在训练期间(也称为离群暴露)在训练期间使用辅助外离群值数据集已显示出令人鼓舞的性能。由于潜在的OOD数据的样本空间可能是过大的,因此进行抽样信息的异常值至关重要。在这项工作中,我们提出了一种新型的基于后取样的离群矿井诗歌诗,该诗歌有助于有效利用异常数据,并促进了ID和OOD数据之间的紧凑决策边界,以改善检测。我们表明,诗在普通基准上建立了最先进的表现。与当前使用贪婪采样策略的最佳方法相比,诗在CIFAR-10和CIFAR-100上分别提高了相对性能的42.0%和24.2%(FPR95)。我们进一步提供了有关诗歌检测有效性的理论见解。
translated by 谷歌翻译
Novelty detection, i.e., identifying whether a given sample is drawn from outside the training distribution, is essential for reliable machine learning. To this end, there have been many attempts at learning a representation well-suited for novelty detection and designing a score based on such representation. In this paper, we propose a simple, yet effective method named contrasting shifted instances (CSI), inspired by the recent success on contrastive learning of visual representations. Specifically, in addition to contrasting a given sample with other instances as in conventional contrastive learning methods, our training scheme contrasts the sample with distributionally-shifted augmentations of itself. Based on this, we propose a new detection score that is specific to the proposed training scheme. Our experiments demonstrate the superiority of our method under various novelty detection scenarios, including unlabeled one-class, unlabeled multi-class and labeled multi-class settings, with various image benchmark datasets. Code and pre-trained models are available at https://github.com/alinlab/CSI.
translated by 谷歌翻译
半监督学习(SSL)的最新最新方法将一致性正则化与基于置信的伪标记结合在一起。为了获得高质量的伪标签,通常采用高置信度阈值。但是,已经表明,对于远离训练数据的样本,深网的基于软磁性的置信度得分可能很高,因此,即使是高信心不明的样品,伪标签也可能仍然不可靠。在这项工作中,我们提出了伪标记的新观点:而不是依靠模型信心,而是衡量未标记的样本是否可能是“分布”;即,接近当前的培训数据。为了对未标记的样本进行分类是“分布”还是“分发”,我们采用了分布外检测文献中的能量评分。随着培训的进行进展,更不标记的样品成为分配并有助于培训,标记和伪标记的数据可以更好地近似于真正的分布以改善模型。实验表明,我们的基于能量的伪标记方法,尽管从概念上讲简单,但在不平衡的SSL基准测试方面显着优于基于置信的方法,并在类平衡的数据上实现了竞争性能。例如,当不平衡比率高于50时,它会在CIFAR10-LT上产生4-6%的绝对准确性提高。当与最新的长尾SSL方法结合使用时,可以实现进一步的改进。
translated by 谷歌翻译
In this paper, we present a simple yet effective method (ABSGD) for addressing the data imbalance issue in deep learning. Our method is a simple modification to momentum SGD where we leverage an attentional mechanism to assign an individual importance weight to each gradient in the mini-batch. Unlike many existing heuristic-driven methods for tackling data imbalance, our method is grounded in {\it theoretically justified distributionally robust optimization (DRO)}, which is guaranteed to converge to a stationary point of an information-regularized DRO problem. The individual-level weight of a sampled data is systematically proportional to the exponential of a scaled loss value of the data, where the scaling factor is interpreted as the regularization parameter in the framework of information-regularized DRO. Compared with existing class-level weighting schemes, our method can capture the diversity between individual examples within each class. Compared with existing individual-level weighting methods using meta-learning that require three backward propagations for computing mini-batch stochastic gradients, our method is more efficient with only one backward propagation at each iteration as in standard deep learning methods. To balance between the learning of feature extraction layers and the learning of the classifier layer, we employ a two-stage method that uses SGD for pretraining followed by ABSGD for learning a robust classifier and finetuning lower layers. Our empirical studies on several benchmark datasets demonstrate the effectiveness of the proposed method.
translated by 谷歌翻译
The long-tail distribution of the visual world poses great challenges for deep learning based classification models on how to handle the class imbalance problem. Existing solutions usually involve class-balancing strategies, e.g. by loss re-weighting, data re-sampling, or transfer learning from head-to tail-classes, but most of them adhere to the scheme of jointly learning representations and classifiers. In this work, we decouple the learning procedure into representation learning and classification, and systematically explore how different balancing strategies affect them for long-tailed recognition. The findings are surprising: (1) data imbalance might not be an issue in learning high-quality representations; (2) with representations learned with the simplest instance-balanced (natural) sampling, it is also possible to achieve strong long-tailed recognition ability by adjusting only the classifier. We conduct extensive experiments and set new state-of-the-art performance on common long-tailed benchmarks like ImageNet-LT, Places-LT and iNaturalist, showing that it is possible to outperform carefully designed losses, sampling strategies, even complex modules with memory, by using a straightforward approach that decouples representation and classification. Our code is available at https://github.com/facebookresearch/classifier-balancing.
translated by 谷歌翻译
许多现实世界的识别问题都有不平衡或长尾标签的分布。这些分布使表示形式学习更具挑战性,因为对尾巴类别的概括有限。如果测试分布与训练分布有所不同,例如统一与长尾,需要解决分配转移的问题。为此,最近的作品通过贝叶斯定理的启发,使用边缘修改扩展了SoftMax跨凝结。在本文中,我们通过专家的平衡产品(Balpoe)概括了几种方法,该方法结合了一个具有不同测试时间目标分布的模型家庭,以解决数据中的不平衡。拟议的专家在一个阶段进行培训,无论是共同还是独立的,并无缝融合到Balpoe中。我们表明,Balpoe是Fisher的一致性,可以最大程度地减少均衡误差并执行广泛的实验以验证我们的方法的有效性。最后,我们研究了在这种情况下混合的效果,发现正则化是学习校准专家的关键要素。我们的实验表明,正则化的BALPOE在测试准确性和校准指标上的表现非常出色,从而导致CIFAR-100-LT,Imagenet-LT和Inaturalist-2018数据集的最新结果。该代码将在纸质接受后公开提供。
translated by 谷歌翻译
在本文中,我们提出了一种新的共同学习框架(COSSL),具有解耦的表示学习和分类器学习,用于实施SSL。为了处理数据不平衡,我们为分类器学习设计了尾级功能增强(TFE)。此外,Imbalanced SSL的当前评估协议仅针对均衡测试集,在现实世界方案中具有有限的实用性。因此,我们进一步在各种转移试验分布下进行了综合评价。在实验中,我们表明我们的方法优于大量移位的分布,在基准数据集中实现最先进的性能,从CiFar-10,CiFar-100,Imagenet到食品-101。我们的代码将公开可用。
translated by 谷歌翻译
自我监督的学习在表示视觉和文本数据的表示方面取得了巨大的成功。但是,当前的方法主要在经过良好策划的数据集中验证,这些数据集未显示现实世界的长尾分布。在损失的角度或模型观点中,重新平衡的重新平衡是为了考虑自我监督的长尾学习的最新尝试,类似于被监督的长尾学习中的范式。然而,没有标签的帮助,由于尾巴样品发现或启发式结构设计的限制,这些探索并未显示出预期的明显希望。与以前的作品不同,我们从替代角度(即数据角度)探索了这个方向,并提出了一种新颖的增强对比度学习(BCL)方法。具体而言,BCL利用深神经网络的记忆效果自动推动对比度学习中样本视图的信息差异,这更有效地增强了标签 - unaware环境中的长尾学习。对一系列基准数据集进行的广泛实验证明了BCL对几种最新方法的有效性。我们的代码可在https://github.com/mediabrain-sjtu/bcl上找到。
translated by 谷歌翻译