本文重点介绍了用神经网络检测分配(OOD)样本的问题。在图像识别任务,训练过的分类往往给人高置信度的远离中分布(ID)数据输入图像,这大大限制了它在现实世界中的应用。为了减轻这个问题,我们提出了一个基于GaN的边界意识分类器(GBAC),用于生成仅包含大多数ID数据的关闭超空间。我们的方法基于传统的神经网分离特征空间作为几个不适合于ood检测的未闭合区域。与GBAC作为辅助模块,封闭的超空间分布以外的OOD数据将具有低得多的分数被分配,允许更有效的检测OOD同时维持分级性能。此外,我们提出了一种快速采样方法,用于产生躺在预先提及的闭合空间的边界上的硬度陈述。在几个数据集和神经网络架构上采取的实验承诺GBAC的有效性。
translated by 谷歌翻译
已知现代深度神经网络模型将错误地将分布式(OOD)测试数据分类为具有很高信心的分数(ID)培训课程之一。这可能会对关键安全应用产生灾难性的后果。一种流行的缓解策略是训练单独的分类器,该分类器可以在测试时间检测此类OOD样本。在大多数实际设置中,在火车时间尚不清楚OOD的示例,因此,一个关键问题是:如何使用合成OOD样品来增加ID数据以训练这样的OOD检测器?在本文中,我们为称为CNC的OOD数据增强提出了一种新颖的复合腐败技术。 CNC的主要优点之一是,除了培训集外,它不需要任何固定数据。此外,与当前的最新技术(SOTA)技术不同,CNC不需要在测试时间进行反向传播或结合,从而使我们的方法在推断时更快。我们与过去4年中主要会议的20种方法进行了广泛的比较,表明,在OOD检测准确性和推理时间方面,使用基于CNC的数据增强训练的模型都胜过SOTA。我们包括详细的事后分析,以研究我们方法成功的原因,并确定CNC样本的较高相对熵和多样性是可能的原因。我们还通过对二维数据集进行零件分解分析提供理论见解,以揭示(视觉和定量),我们的方法导致ID类别周围的边界更紧密,从而更好地检测了OOD样品。源代码链接:https://github.com/cnc-ood
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
检测分配(OOD)输入对于安全部署现实世界的深度学习模型至关重要。在评估良性分布和OOD样品时,检测OOD示例的现有方法很好。然而,在本文中,我们表明,当在分发的分布和OOD输入时,现有的检测机制可以极其脆弱,其具有最小的对抗扰动,这不会改变其语义。正式地,我们广泛地研究了对共同的检测方法的强大分布检测问题,并表明最先进的OOD探测器可以通过对分布和ood投入增加小扰动来容易地欺骗。为了抵消这些威胁,我们提出了一种称为芦荟的有效算法,它通过将模型暴露于对抗性inlier和异常值示例来执行鲁棒训练。我们的方法可以灵活地结合使用,并使现有方法稳健。在共同的基准数据集上,我们表明芦荟大大提高了最新的ood检测的稳健性,对CiFar-10和46.59%的CiFar-100改善了58.4%的Auroc改善。
translated by 谷歌翻译
Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially is a fundamental requirement for deploying a good classifier in many real-world machine learning applications. However, deep neural networks with the softmax classifier are known to produce highly overconfident posterior distributions even for such abnormal samples. In this paper, we propose a simple yet effective method for detecting any abnormal samples, which is applicable to any pre-trained softmax neural classifier. We obtain the class conditional Gaussian distributions with respect to (low-and upper-level) features of the deep models under Gaussian discriminant analysis, which result in a confidence score based on the Mahalanobis distance. While most prior methods have been evaluated for detecting either out-of-distribution or adversarial samples, but not both, the proposed method achieves the state-of-the-art performances for both cases in our experiments. Moreover, we found that our proposed method is more robust in harsh cases, e.g., when the training dataset has noisy labels or small number of samples. Finally, we show that the proposed method enjoys broader usage by applying it to class-incremental learning: whenever out-of-distribution samples are detected, our classification rule can incorporate new classes well without further training deep models.
translated by 谷歌翻译
本文提出了一个新颖的分布(OOD)检测框架,名为MoodCat用于图像分类器。MoodCat掩盖了输入图像的随机部分,并使用生成模型将蒙版图像合成为在分类结果条件下的新图像中。然后,它计算原始图像与合成图像之间的语义差异。与现有的解决方案相比,MoodCat自然会使用拟议的面具和条件合成策略来学习分布数据的语义信息,这对于识别OOD至关重要。实验结果表明,MoodCat的表现优于最先进的OOD检测解决方案。
translated by 谷歌翻译
检测到分布(OOD)样本对于在现实世界中的分类器的安全部署至关重要。但是,已知深层神经网络对异常数据过于自信。现有作品直接设计得分功能,通过挖掘分别分类器(ID)和OOD的不一致性。在本文中,我们基于以下假设,即对ID数据进行训练的自动编码器无法重建OOD和ID,我们进一步补充了这种不一致性。我们提出了一种新颖的方法,读取(重建误差聚合检测器),以统一分类器和自动编码器的不一致。具体而言,原始像素的重建误差转换为分类器的潜在空间。我们表明,转换后的重建误差桥接了语义差距,并从原始的传承了检测性能。此外,我们提出了一种调整策略,以根据OOD数据的细粒度表征来减轻自动编码器的过度自信问题。在两种情况下,我们分别提出了方法的两个变体,即仅基于预先训练的分类器和读取 - 读取器(欧几里得距离),即读取MD(Mahalanobis距离),该分类器重新训练分类器。我们的方法不需要访问测试时间数据以进行微调超参数。最后,我们通过与最先进的OOD检测算法进行了广泛的比较来证明所提出的方法的有效性。在CIFAR-10预先训练的WideresNet上,我们的方法将平均FPR@95TPR降低了9.8%,而不是先前的最新ART。
translated by 谷歌翻译
当分布(ID)样品与分布外(OOD)样本之间存在差异时,对ID样品进行训练的深神经网络遭受了OOD样品的高信心预测。这主要是由无法使用的OOD样品引起的,以限制培训过程中的网络。为了提高深网的OOD敏感性,几种最先进的方法将其他现实世界数据集的样本作为OOD样本引入训练过程,并将手动确定的标签分配给这些OOD样本。但是,他们牺牲了分类准确性,因为OOD样品的不可靠标记会破坏ID分类。为了平衡ID的概括和OOD检测,要解决的主要挑战是使OOD样本与ID兼容,这在本文中由我们提议的\ textit {监督适应}方法解决,以定义OOD样本的适应性监督信息。首先,通过通过共同信息来测量ID样本及其标签之间的依赖关系,我们根据所有类别的负概率揭示了监督信息的形式。其次,在通过解决多个二进制回归问题来探索ID和OOD样本之间的数据相关性之后,我们估算了监督信息以使ID类更可分离。我们使用两个ID数据集和11个OOD数据集对四个高级网络体系结构进行实验,以证明我们的监督适应方法在实现ID分类能力和OOD检测能力方面的平衡效果。
translated by 谷歌翻译
We consider the problem of detecting out-of-distribution images in neural networks. We propose ODIN, a simple and effective method that does not require any change to a pre-trained neural network. Our method is based on the observation that using temperature scaling and adding small perturbations to the input can separate the softmax score distributions between in-and out-of-distribution images, allowing for more effective detection. We show in a series of experiments that ODIN is compatible with diverse network architectures and datasets. It consistently outperforms the baseline approach (Hendrycks & Gimpel, 2017) by a large margin, establishing a new state-of-the-art performance on this task. For example, ODIN reduces the false positive rate from the baseline 34.7% to 4.3% on the DenseNet (applied to CIFAR-10 and Tiny-ImageNet) when the true positive rate is 95%.
translated by 谷歌翻译
分布(OOD)检测是安全部署模型在开放世界中的关键。对于OOD检测,收集足够的标记数据(ID)通常比未标记的数据更耗时且昂贵。当ID标记的数据受到限制时,由于其对ID标记的数据的量的高度依赖性,因此先前的OOD检测方法不再优越。基于有限的ID标记数据和足够的未标记数据,我们定义了一种称为弱监督的新设置(WSOOD)。为了解决新问题,我们提出了一种称为拓扑结构学习(TSL)的有效方法。首先,TSL使用一种对比度学习方法来构建ID和OOD数据的初始拓扑结构空间。其次,在初始拓扑空间中,TSL矿山有效的拓扑连接。最后,基于有限的ID标记数据和开采拓扑连接,TSL在新的拓扑空间中重建拓扑结构,以提高ID和OOD实例的可分离性。对几个代表性数据集的广泛研究表明,TSL明显胜过最先进的研究,从而在新的WSood环境中验证了我们方法的有效性和鲁棒性。
translated by 谷歌翻译
The problem of detecting whether a test sample is from in-distribution (i.e., training distribution by a classifier) or out-of-distribution sufficiently different from it arises in many real-world machine learning applications. However, the state-of-art deep neural networks are known to be highly overconfident in their predictions, i.e., do not distinguish in-and out-of-distributions. Recently, to handle this issue, several threshold-based detectors have been proposed given pre-trained neural classifiers. However, the performance of prior works highly depends on how to train the classifiers since they only focus on improving inference procedures. In this paper, we develop a novel training method for classifiers so that such inference algorithms can work better. In particular, we suggest two additional terms added to the original loss (e.g., cross entropy). The first one forces samples from out-of-distribution less confident by the classifier and the second one is for (implicitly) generating most effective training samples for the first one. In essence, our method jointly trains both classification and generative neural networks for out-of-distribution. We demonstrate its effectiveness using deep convolutional neural networks on various popular image datasets.
translated by 谷歌翻译
在推理时间检测到分布(OOD)数据对于机器学习的许多应用至关重要。我们提出Xood:一个新型的基于极值的OOD检测框架,用于图像分类,由两种算法组成。第一个是Xood-M完全无监督,而第二个Xood-L则是自我监督的。两种算法都依赖于神经网络激活层中数据的极端值捕获的信号,以区分分布和OOD实例。我们通过实验表明,Xood-M和Xood-l均优于效率和准确性的许多基准数据集的最先进的OOD检测方法,从而将虚假阳性率(FPR95)降低了50%,同时改善了推论时间数量级。
translated by 谷歌翻译
开放式识别使深度神经网络(DNN)能够识别未知类别的样本,同时在已知类别的样本上保持高分类精度。基于自动编码器(AE)和原型学习的现有方法在处理这项具有挑战性的任务方面具有巨大的潜力。在这项研究中,我们提出了一种新的方法,称为类别特定的语义重建(CSSR),该方法整合了AE和原型学习的力量。具体而言,CSSR用特定于类的AE表示的歧管替代了原型点。与传统的基于原型的方法不同,CSSR在单个AE歧管上的每个已知类模型,并通过AE的重建误差来测量类归属感。特定于类的AE被插入DNN主链的顶部,并重建DNN而不是原始图像所学的语义表示。通过端到端的学习,DNN和AES互相促进,以学习歧视性和代表性信息。在多个数据集上进行的实验结果表明,所提出的方法在封闭式和开放式识别中都达到了出色的性能,并且非常简单且灵活地将其纳入现有框架中。
translated by 谷歌翻译
检测到分布输入对于在现实世界中安全部署机器学习模型至关重要。然而,已知神经网络遭受过度自信的问题,在该问题中,它们对分布和分布的输入的信心异常高。在这项工作中,我们表明,可以通过在训练中实施恒定的向量规范来通过logit归一化(logitnorm)(logitnorm)来缓解此问题。我们的方法是通过分析的激励,即logit的规范在训练过程中不断增加,从而导致过度自信的产出。因此,LogitNorm背后的关键思想是将网络优化期间输出规范的影响解散。通过LogitNorm培训,神经网络在分布数据和分布数据之间产生高度可区分的置信度得分。广泛的实验证明了LogitNorm的优势,在公共基准上,平均FPR95最高为42.30%。
translated by 谷歌翻译
变形自身偏移(VAES)是具有来自深神经网络架构和贝叶斯方法的丰富代表功能的有影响力的生成模型。然而,VAE模型具有比分布(ID)输入的分配方式分配更高的可能性较高的可能性。为了解决这个问题,认为可靠的不确定性估计是对对OOC投入的深入了解至关重要。在这项研究中,我们提出了一种改进的噪声对比之前(INCP),以便能够集成到VAE的编码器中,称为INCPVAE。INCP是可扩展,可培训和与VAE兼容的,它还采用了来自INCP的优点进行不确定性估计。各种数据集的实验表明,与标准VAE相比,我们的模型在OOD数据的不确定性估计方面是优越的,并且在异常检测任务中是强大的。INCPVAE模型获得了可靠的输入不确定性估算,并解决了VAE模型中的ood问题。
translated by 谷歌翻译
Detecting out-of-distribution (OOD) inputs during the inference stage is crucial for deploying neural networks in the real world. Previous methods commonly relied on the output of a network derived from the highly activated feature map. In this study, we first revealed that a norm of the feature map obtained from the other block than the last block can be a better indicator of OOD detection. Motivated by this, we propose a simple framework consisting of FeatureNorm: a norm of the feature map and NormRatio: a ratio of FeatureNorm for ID and OOD to measure the OOD detection performance of each block. In particular, to select the block that provides the largest difference between FeatureNorm of ID and FeatureNorm of OOD, we create Jigsaw puzzle images as pseudo OOD from ID training samples and calculate NormRatio, and the block with the largest value is selected. After the suitable block is selected, OOD detection with the FeatureNorm outperforms other OOD detection methods by reducing FPR95 by up to 52.77% on CIFAR10 benchmark and by up to 48.53% on ImageNet benchmark. We demonstrate that our framework can generalize to various architectures and the importance of block selection, which can improve previous OOD detection methods as well.
translated by 谷歌翻译
In deep neural learning, a discriminator trained on in-distribution (ID) samples may make high-confidence predictions on out-of-distribution (OOD) samples. This triggers a significant matter for robust, trustworthy and safe deep learning. The issue is primarily caused by the limited ID samples observable in training the discriminator when OOD samples are unavailable. We propose a general approach for \textit{fine-tuning discriminators by implicit generators} (FIG). FIG is grounded on information theory and applicable to standard discriminators without retraining. It improves the ability of a standard discriminator in distinguishing ID and OOD samples by generating and penalizing its specific OOD samples. According to the Shannon entropy, an energy-based implicit generator is inferred from a discriminator without extra training costs. Then, a Langevin dynamic sampler draws specific OOD samples for the implicit generator. Lastly, we design a regularizer fitting the design principle of the implicit generator to induce high entropy on those generated OOD samples. The experiments on different networks and datasets demonstrate that FIG achieves the state-of-the-art OOD detection performance.
translated by 谷歌翻译
常规监督学习或分类的主要假设是,测试样本是从与训练样本相同的分布中得出的,该样本称为封闭设置学习或分类。在许多实际情况下,事实并非如此,因为测试数据中有未知数或看不见的类样本,这称为“开放式”方案,需要检测到未知数。该问题称为开放式识别问题,在安全至关重要的应用中很重要。我们建议通过学习成对相似性来检测未知数(或看不见的类样本)。提出的方法分为两个步骤。它首先使用培训中出现的所见类学习了一个封闭的集体分类器,然后学习如何将看到的类与伪单人(自动生成的看不见的类样本)进行比较。伪无表情的一代是通过对可见或训练样品进行分配转换增加而进行的。我们称我们的方法OPG(基于伪看不见的数据生成开放式识别)。实验评估表明,基于相似性的功能可以成功区分基准数据集中的未见特征,以进行开放式识别。
translated by 谷歌翻译
已知神经网络在输入图像上产生过度自信的预测,即使这些图像不存在(OOD)样本。这限制了神经网络模型在存在OOD样本的实际场景中的应用。许多现有方法通过利用各种提示来确定OOD实例,例如在特征空间,逻辑空间,梯度空间或图像的原始空间中查找不规则模式。相反,本文提出了一种简单的测试时间线性训练(ETLT)用于OOD检测方法。从经验上讲,我们发现输入图像的概率不存在,与神经网络提取的功能令人惊讶地线性相关。具体来说,许多最先进的OOD算法虽然旨在以不同的方式衡量可靠性,但实际上导致OOD得分主要与其图像特征线性相关。因此,通过简单地学习从配对图像特征训练并在测试时间推断的OOD分数的线性回归模型,我们可以为测试实例做出更精确的OOD预测。我们进一步提出了该方法的在线变体,该变体可以实现有希望的性能,并且在现实世界中更为实用。值得注意的是,我们将FPR95从$ 51.37 \%$提高到CIFAR-10数据集的$ 12.30 \%$,最大的SoftMax概率是基本的OOD检测器。在几个基准数据集上进行的广泛实验显示了ETLT对OOD检测任务的功效。
translated by 谷歌翻译
在图像分类中,在检测分布(OOD)数据时发生了许多发展。但是,大多数OOD检测方法是在一组标准数据集上评估的,该数据集与培训数据任意不同。没有明确的定义``好的''ood数据集。此外,最先进的OOD检测方法已经在这些标准基准上取得了几乎完美的结果。在本文中,我们定义了2类OOD数据使用与分布(ID)数据的感知/视觉和语义相似性的微妙概念。我们将附近的OOD样本定义为感知上相似但语义上与ID样本的不同,并将样本转移为视觉上不同但在语义上与ID相似的点数据。然后,我们提出了一个基于GAN的框架,用于从这两个类别中生成OOD样品,给定一个ID数据集。通过有关MNIST,CIFAR-10/100和Imagenet的广泛实验,我们表明A)在常规基准上表现出色的ART OOD检测方法对我们提出的基准测试的稳健性明显较小。 N基准测试,反之亦然,因此表明甚至可能不需要单独的OOD集来可靠地评估OOD检测中的性能。
translated by 谷歌翻译