为了对分布样本进行分类,深层神经网络学习标签 - 歧义表示表示,但是,根据信息瓶颈,这不一定是分布歧视性的。因此,训练有素的网络可以为与分布样本不同的分布样本分配出意外的高信任预测。具体而言,网络从分布样本中提取与标签相关的信息,以学习标签 - 歧义表示表示,但丢弃了与标签相关的弱信息。因此,网络用最小标签敏感的信息作为分布样本将分布式样品视为分布样品。根据分布样本的不同信息性属性,双重表示学习(DRL)方法学习与分配样本的标签无关的分布不同的表示形式,并结合了标签和分布歧义性歧视性。检测到分布样本的表示。对于标签 - 歧义表示形式,DRL通过隐式约束构建了互补分布不同的表示表示,即整合了不同的中间表示,其中中间表示与标签 - 歧义表示表示具有更高的权重。实验表明,DRL的表现优于分布外检测的最新方法。
translated by 谷歌翻译
深度神经网络只会学会将分布输入映射到其在训练阶段的相应地面真实标签,而不会区分分配样本与分布情况。这是由于所有样品都是独立且分布相同而没有分布区别的假设。因此,从分布样品中学到的一个预处理的网络将分布的样本视为分布,并在测试阶段对它们进行高信心预测。为了解决这个问题,我们从培训分配样本附近分布中绘制出分布的样本,以学习拒绝对分数输入的预测。通过假设通过混合多个分发样品而生成的分布样本不会共享其组成部分相同的类别,从而引入了\ textit {跨级附近分布}。因此,我们通过从跨级附近分布中得出的分布样本对列表进行列表来提高预审慎的网络的可区分性,其中每个分布输入输入都对应于互补标签。各种内部/分布数据集的实验表明,所提出的方法在提高区分内部和分发样品的能力方面显着优于现有方法。
translated by 谷歌翻译
当分布(ID)样品与分布外(OOD)样本之间存在差异时,对ID样品进行训练的深神经网络遭受了OOD样品的高信心预测。这主要是由无法使用的OOD样品引起的,以限制培训过程中的网络。为了提高深网的OOD敏感性,几种最先进的方法将其他现实世界数据集的样本作为OOD样本引入训练过程,并将手动确定的标签分配给这些OOD样本。但是,他们牺牲了分类准确性,因为OOD样品的不可靠标记会破坏ID分类。为了平衡ID的概括和OOD检测,要解决的主要挑战是使OOD样本与ID兼容,这在本文中由我们提议的\ textit {监督适应}方法解决,以定义OOD样本的适应性监督信息。首先,通过通过共同信息来测量ID样本及其标签之间的依赖关系,我们根据所有类别的负概率揭示了监督信息的形式。其次,在通过解决多个二进制回归问题来探索ID和OOD样本之间的数据相关性之后,我们估算了监督信息以使ID类更可分离。我们使用两个ID数据集和11个OOD数据集对四个高级网络体系结构进行实验,以证明我们的监督适应方法在实现ID分类能力和OOD检测能力方面的平衡效果。
translated by 谷歌翻译
In deep neural learning, a discriminator trained on in-distribution (ID) samples may make high-confidence predictions on out-of-distribution (OOD) samples. This triggers a significant matter for robust, trustworthy and safe deep learning. The issue is primarily caused by the limited ID samples observable in training the discriminator when OOD samples are unavailable. We propose a general approach for \textit{fine-tuning discriminators by implicit generators} (FIG). FIG is grounded on information theory and applicable to standard discriminators without retraining. It improves the ability of a standard discriminator in distinguishing ID and OOD samples by generating and penalizing its specific OOD samples. According to the Shannon entropy, an energy-based implicit generator is inferred from a discriminator without extra training costs. Then, a Langevin dynamic sampler draws specific OOD samples for the implicit generator. Lastly, we design a regularizer fitting the design principle of the implicit generator to induce high entropy on those generated OOD samples. The experiments on different networks and datasets demonstrate that FIG achieves the state-of-the-art OOD detection performance.
translated by 谷歌翻译
检测到分布(OOD)样本对于在现实世界中的分类器的安全部署至关重要。但是,已知深层神经网络对异常数据过于自信。现有作品直接设计得分功能,通过挖掘分别分类器(ID)和OOD的不一致性。在本文中,我们基于以下假设,即对ID数据进行训练的自动编码器无法重建OOD和ID,我们进一步补充了这种不一致性。我们提出了一种新颖的方法,读取(重建误差聚合检测器),以统一分类器和自动编码器的不一致。具体而言,原始像素的重建误差转换为分类器的潜在空间。我们表明,转换后的重建误差桥接了语义差距,并从原始的传承了检测性能。此外,我们提出了一种调整策略,以根据OOD数据的细粒度表征来减轻自动编码器的过度自信问题。在两种情况下,我们分别提出了方法的两个变体,即仅基于预先训练的分类器和读取 - 读取器(欧几里得距离),即读取MD(Mahalanobis距离),该分类器重新训练分类器。我们的方法不需要访问测试时间数据以进行微调超参数。最后,我们通过与最先进的OOD检测算法进行了广泛的比较来证明所提出的方法的有效性。在CIFAR-10预先训练的WideresNet上,我们的方法将平均FPR@95TPR降低了9.8%,而不是先前的最新ART。
translated by 谷歌翻译
开放式识别使深度神经网络(DNN)能够识别未知类别的样本,同时在已知类别的样本上保持高分类精度。基于自动编码器(AE)和原型学习的现有方法在处理这项具有挑战性的任务方面具有巨大的潜力。在这项研究中,我们提出了一种新的方法,称为类别特定的语义重建(CSSR),该方法整合了AE和原型学习的力量。具体而言,CSSR用特定于类的AE表示的歧管替代了原型点。与传统的基于原型的方法不同,CSSR在单个AE歧管上的每个已知类模型,并通过AE的重建误差来测量类归属感。特定于类的AE被插入DNN主链的顶部,并重建DNN而不是原始图像所学的语义表示。通过端到端的学习,DNN和AES互相促进,以学习歧视性和代表性信息。在多个数据集上进行的实验结果表明,所提出的方法在封闭式和开放式识别中都达到了出色的性能,并且非常简单且灵活地将其纳入现有框架中。
translated by 谷歌翻译
无法保证专家注释的培训数据的质量,甚至对于由分发样本组成的非IID数据(即,分布式和分布式样本都具有不同的分布),更是如此。 。专家可能会错误地注释与分布样本相同的分发样品,从而产生不可信的地面真相标签。学习这种非IID数据混合与不信任标签的分布样品混合在一起,既浅层和深度学习都有显着挑战,没有报告相关工作。可以识别样本的值得信赖的互补标签,指示其不属于哪些类,因为除分布外样品和分布外样品都不属于类别外,除了与地面真实标签相对应的类别。有了这个见解,我们提出了一种新颖的\ textit {灰色学习}方法,可以从非IID数据中学习具有分布式和分离外样品的非IID数据。由于训练样本的不确定分布,我们拒绝了低信心输入的互补标签,同时将高信心输入映射到培训中的地面真相标签。在统计学习理论的基础上,我们得出了概括误差,该误差表明灰色学习在非IID数据上实现了紧密的束缚。广泛的实验表明,我们的方法对可靠统计的替代方法提供了重大改进。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
Deep neural networks have attained remarkable performance when applied to data that comes from the same distribution as that of the training set, but can significantly degrade otherwise. Therefore, detecting whether an example is out-of-distribution (OoD) is crucial to enable a system that can reject such samples or alert users. Recent works have made significant progress on OoD benchmarks consisting of small image datasets. However, many recent methods based on neural networks rely on training or tuning with both in-distribution and out-of-distribution data. The latter is generally hard to define a-priori, and its selection can easily bias the learning. We base our work on a popular method ODIN 1 [21], proposing two strategies for freeing it from the needs of tuning with OoD data, while improving its OoD detection performance. We specifically propose to decompose confidence scoring as well as a modified input pre-processing method. We show that both of these significantly help in detection performance. Our further analysis on a larger scale image dataset shows that the two types of distribution shifts, specifically semantic shift and non-semantic shift, present a significant difference in the difficulty of the problem, providing an analysis of when ODIN-like strategies do or do not work.
translated by 谷歌翻译
我们引入强大的想法,从超比计算到有挑战性领域的分布外(OOD)检测。与基于单个神经网络的单层执行的大多数现有的工作相比,我们使用相似性的半正交投影矩阵来将来自多个层的特征映射投影成公共矢量空间。通过反复应用捆绑操作$ \ oplus $,我们为所有分布类创建特定于特定于特定于特定的描述符向量。在测试时间时,描述符矢量之间的简单高效的余弦相似性计算一致地识别具有比当前最先进的性能更好的ood样本。我们表明,多维网络层的超级融合对于实现最佳的普遍表现至关重要。
translated by 谷歌翻译
异常检测任务在AI安全中起着至关重要的作用。处理这项任务存在巨大的挑战。观察结果表明,深度神经网络分类器通常倾向于以高信心将分布(OOD)输入分为分配类别。现有的工作试图通过在培训期间向分类器暴露于分类器时明确对分类器施加不确定性来解决问题。在本文中,我们提出了一种替代概率范式,该范式实际上对OOD检测任务既有用,又可行。特别是,我们在培训过程中施加了近距离和离群数据之间的统计独立性,以确保inlier数据在培训期间向深度估计器显示有关OOD数据的信息很少。具体而言,我们通过Hilbert-Schmidt独立标准(HSIC)估算了Inlier和离群数据之间的统计依赖性,并在培训期间对此类度量进行了惩罚。我们还将方法与推理期间的新型统计测试相关联,加上我们的原则动机。经验结果表明,我们的方法对各种基准测试的OOD检测是有效且可靠的。与SOTA模型相比,我们的方法在FPR95,AUROC和AUPR指标方面取得了重大改进。代码可用:\ url {https://github.com/jylins/hone}。
translated by 谷歌翻译
分布(OOD)检测是安全部署模型在开放世界中的关键。对于OOD检测,收集足够的标记数据(ID)通常比未标记的数据更耗时且昂贵。当ID标记的数据受到限制时,由于其对ID标记的数据的量的高度依赖性,因此先前的OOD检测方法不再优越。基于有限的ID标记数据和足够的未标记数据,我们定义了一种称为弱监督的新设置(WSOOD)。为了解决新问题,我们提出了一种称为拓扑结构学习(TSL)的有效方法。首先,TSL使用一种对比度学习方法来构建ID和OOD数据的初始拓扑结构空间。其次,在初始拓扑空间中,TSL矿山有效的拓扑连接。最后,基于有限的ID标记数据和开采拓扑连接,TSL在新的拓扑空间中重建拓扑结构,以提高ID和OOD实例的可分离性。对几个代表性数据集的广泛研究表明,TSL明显胜过最先进的研究,从而在新的WSood环境中验证了我们方法的有效性和鲁棒性。
translated by 谷歌翻译
Detecting out-of-distribution (OOD) inputs during the inference stage is crucial for deploying neural networks in the real world. Previous methods commonly relied on the output of a network derived from the highly activated feature map. In this study, we first revealed that a norm of the feature map obtained from the other block than the last block can be a better indicator of OOD detection. Motivated by this, we propose a simple framework consisting of FeatureNorm: a norm of the feature map and NormRatio: a ratio of FeatureNorm for ID and OOD to measure the OOD detection performance of each block. In particular, to select the block that provides the largest difference between FeatureNorm of ID and FeatureNorm of OOD, we create Jigsaw puzzle images as pseudo OOD from ID training samples and calculate NormRatio, and the block with the largest value is selected. After the suitable block is selected, OOD detection with the FeatureNorm outperforms other OOD detection methods by reducing FPR95 by up to 52.77% on CIFAR10 benchmark and by up to 48.53% on ImageNet benchmark. We demonstrate that our framework can generalize to various architectures and the importance of block selection, which can improve previous OOD detection methods as well.
translated by 谷歌翻译
神经网络在分布中的数据中取得了令人印象深刻的性能,该数据与训练集相同,但可以为这些网络从未见过的数据产生过分自信的结果。因此,至关重要的是要检测输入是否来自分布(OOD),以确保现实世界中部署的神经网络的安全性。在本文中,我们提出了一种简单有效的事后技术Weshort,以减少神经网络对OOD数据的过度自信。我们的方法灵感来自对内部残留结构的观察,该结构显示了捷径层中OOD和分布(ID)数据的分离。我们的方法与不同的OOD检测分数兼容,并且可以很好地推广到网络的不同体系结构。我们在各种OOD数据集上演示了我们的方法,以展示其竞争性能,并提供合理的假设,以解释我们的方法为何起作用。在Imagenet基准测试上,Weshort在假阳性率(FPR95)和接收器操作特征(AUROC)下实现了最先进的性能(在事后方法)上。
translated by 谷歌翻译
使用嘈杂的标签学习是一场实际上有挑战性的弱势监督。在现有文献中,开放式噪声总是被认为是有毒的泛化,类似于封闭式噪音。在本文中,我们经验证明,开放式嘈杂标签可能是无毒的,甚至有利于对固有的嘈杂标签的鲁棒性。灵感来自观察,我们提出了一种简单而有效的正则化,通过将具有动态噪声标签(ODNL)引入培训的开放式样本。使用ODNL,神经网络的额外容量可以在很大程度上以不干扰来自清洁数据的学习模式的方式消耗。通过SGD噪声的镜头,我们表明我们的方法引起的噪音是随机方向,无偏向,这可能有助于模型收敛到最小的最小值,具有卓越的稳定性,并强制执行模型以产生保守预测-of-分配实例。具有各种类型噪声标签的基准数据集的广泛实验结果表明,所提出的方法不仅提高了许多现有的强大算法的性能,而且即使在标签噪声设置中也能实现分配异点检测任务的显着改进。
translated by 谷歌翻译
检测到分布(OOD)数据是一项任务,它正在接受计算机视觉的深度学习领域越来越多的研究注意力。但是,通常在隔离任务上评估检测方法的性能,而不是考虑串联中的潜在下游任务。在这项工作中,我们检查了存在OOD数据(SCOD)的选择性分类。也就是说,检测OOD样本的动机是拒绝它们,以便降低它们对预测质量的影响。我们在此任务规范下表明,与仅在OOD检测时进行评估时,现有的事后方法的性能大不相同。这是因为如果ID数据被错误分类,将分布分配(ID)数据与OOD数据混合在一起的问题不再是一个问题。但是,正确和不正确的预测的ID数据中的汇合变得不受欢迎。我们还提出了一种新颖的SCOD,SoftMax信息保留(SIRC)的方法,该方法通过功能不足信息来增强基于软疗法的置信度得分,以便在不牺牲正确和错误的ID预测之间的分离的情况下,可以提高其识别OOD样品的能力。在各种成像网尺度数据集和卷积神经网络体系结构上进行的实验表明,SIRC能够始终如一地匹配或胜过SCOD的基线,而现有的OOD检测方法则无法做到。
translated by 谷歌翻译
分发(OOD)检测的任务对于在现实世界中部署机器学习模型至关重要。在本文中,我们观察到分布(ID)和OOD特征的奇异值分布截然不同:OOD特征矩阵倾向于具有比ID特征更大的优势奇异值,并且OOD样本的类预测在很大程度上取决于它。该观察结果促使我们提出\ texttt {rankfeat},这是一种简单而有效的\ texttt {post hoc}方法,通过删除由最大的单数值和相关的单数矢量组成的rank-1矩阵,从(\ emph { \ texttt {rankfeat}达到\ emph {最新的}性能,并将平均误报率(FPR95)降低了17.90 \%,与以前的最佳方法相比。提供了广泛的消融研究和全面的理论分析,以支持经验结果。
translated by 谷歌翻译
现有的分布(OOD)检测方法通常在具有平衡的类别分布的培训集中进行基准测试。但是,在实际应用程序中,培训集具有长尾分配是很常见的。在这项工作中,我们首先证明现有的OOD检测方法通常会在训练集分布式分布时遭受重大性能降解。通过分析,我们认为这是因为模型难以区分少数尾巴级分配样本与真实的OOD样本,从而使尾巴类更容易被错误地检测为OOD。为了解决这个问题,我们提出了部分和不对称的监督对比学习(PASCL),该学习明确鼓励该模型区分尾级分配样本和OOD样品。为了进一步提高分布分类的准确性,我们提出了辅助分支列式,该辅助分支列出了BN的两个单独分支和分类层分别用于异常检测和分布分类。直觉是,分布和OOD异常数据具有不同的基础分布。我们的方法的表现优于先前的最新方法$ 1.29 \%$,$ 1.45 \%$,$ 0.69 \%$ $ $ $ $ $ $异常检测误报(FPR)和$ 3.24 \%\%$,$ 4.06 \%$,$ 7.89 \%$ $ CIFAR10-LT,CIFAR100-LT和IMAGENET-LT的分布分类精度。代码和预培训模型可在https://github.com/amazon-research/long-tailed-ood-detection上找到。
translated by 谷歌翻译
不确定性估计是任何部署的机器学习系统中的关键组件。评估不确定性估计的一种方法是使用“分布外”(OOD)检测,即使用不确定性区分训练数据分布和看不见的不同数据分布。在这项工作中,我们表明当前特征密度的不确定度估计器不能在不同的OOD检测设置上保持良好。为了解决这一问题,我们建议分解学习的陈述,并将估计的不确定性分别相结合。通过实验,我们证明我们可以大大提高不确定性估计的性能和可解释性。
translated by 谷歌翻译
已知现代深度神经网络模型将错误地将分布式(OOD)测试数据分类为具有很高信心的分数(ID)培训课程之一。这可能会对关键安全应用产生灾难性的后果。一种流行的缓解策略是训练单独的分类器,该分类器可以在测试时间检测此类OOD样本。在大多数实际设置中,在火车时间尚不清楚OOD的示例,因此,一个关键问题是:如何使用合成OOD样品来增加ID数据以训练这样的OOD检测器?在本文中,我们为称为CNC的OOD数据增强提出了一种新颖的复合腐败技术。 CNC的主要优点之一是,除了培训集外,它不需要任何固定数据。此外,与当前的最新技术(SOTA)技术不同,CNC不需要在测试时间进行反向传播或结合,从而使我们的方法在推断时更快。我们与过去4年中主要会议的20种方法进行了广泛的比较,表明,在OOD检测准确性和推理时间方面,使用基于CNC的数据增强训练的模型都胜过SOTA。我们包括详细的事后分析,以研究我们方法成功的原因,并确定CNC样本的较高相对熵和多样性是可能的原因。我们还通过对二维数据集进行零件分解分析提供理论见解,以揭示(视觉和定量),我们的方法导致ID类别周围的边界更紧密,从而更好地检测了OOD样品。源代码链接:https://github.com/cnc-ood
translated by 谷歌翻译