目的:为Kern等人提出的正弦线圈灵敏度模型提供封闭形式的解决方案。这种封闭形式允许对地面DEBIAS数据集的各种模拟偏置字段进行精确计算。方法:使用傅立叶分布理论和标准积分技术来计算线段磁场的傅立叶变换。结果:a $ l^1 _ {\ rm loc}(\ mathbb {r}^3)$函数在任意线段的几何形状中以完整的通用性得出。还讨论了采样标准和与原始正弦模型的等效性。最后,作者提供了CUDA加速实现$ \ texttt {biasgen} $。结论:由于派生的结果受到线圈定位和几何形状的影响,从业者将可以访问更多样化的模拟数据集生态系统,这些数据集可用于比较前瞻性偏见方法。
translated by 谷歌翻译
新磁共振(MR)成像方式可以量化血流动力学,但需要长时间的采集时间,妨碍其广泛用于早期诊断心血管疾病。为了减少采集​​时间,常规使用来自未采样测量的重建方法,使得利用旨在提高图像可压缩性的表示。重建的解剖和血液动力学图像可能存在视觉伪影。尽管这些工件中的一些基本上是重建错误,因此欠采样的后果,其他人可能是由于测量噪声或采样频率的随机选择。另有说明,重建的图像变为随机变量,并且其偏差和其协方差都可以导致视觉伪影;后者会导致可能误解的空间相关性以用于视觉信息。虽然前者的性质已经在文献中已经研究过,但后者尚未得到关注。在这项研究中,我们研究了从重建过程产生的随机扰动的理论特性,并对模拟和主动脉瘤进行了许多数值实验。我们的结果表明,当基于$ \ ell_1 $ -norm最小化的高斯欠采样模式与恢复算法组合时,相关长度保持限制为2到三个像素。然而,对于其他欠采样模式,相关长度可以显着增加,较高的欠采样因子(即8倍或16倍压缩)和不同的重建方法。
translated by 谷歌翻译
为偏置场校正和磁共振归一化问题提出了空间正则化的高斯混合模型LAPGM。提出的空间正常化程序为从业者提供了平衡偏置磁场去除和保存图像对比度之间的微调控制,以提供多序列的磁共振图像。LAPGM的拟合高斯参数用作控制值,可用于在不同的患者扫描中标准化图像强度。将LAPGM与单个和多序列设置中的众所周知的词汇算法N4ITK进行了比较。作为一种归一化程序,将LAPGM与已知技术(例如:最大归一化,Z得分归一化和水掩模的利益区域归一化)进行比较。最后,由作者提供了cuda加速python软件包$ \ texttt {lapgm} $。
translated by 谷歌翻译
In photoacoustic tomography (PAT) with flat sensor, we routinely encounter two types of limited data. The first is due to using a finite sensor and is especially perceptible if the region of interest is large relative to the sensor or located farther away from the sensor. In this paper, we focus on the second type caused by a varying sensitivity of the sensor to the incoming wavefront direction which can be modelled as binary i.e. by a cone of sensitivity. Such visibility conditions result, in the Fourier domain, in a restriction of both the image and the data to a bow-tie, akin to the one corresponding to the range of the forward operator. The visible wavefrontsets in image and data domains, are related by the wavefront direction mapping. We adapt the wedge restricted Curvelet decomposition, we previously proposed for the representation of the full PAT data, to separate the visible and invisible wavefronts in the image. We optimally combine fast approximate operators with tailored deep neural network architectures into efficient learned reconstruction methods which perform reconstruction of the visible coefficients and the invisible coefficients are learned from a training set of similar data.
translated by 谷歌翻译
人们普遍认为,深网的成功在于他们学习数据功能的有意义表示的能力。然而,了解该功能学习何时以及如何提高性能仍然是一个挑战:例如,它对经过对图像进行分类的现代体系结构有益,而对于在相同数据上针对同一任务培训的完全连接的网络是有害的。在这里,我们提出了有关此难题的解释,表明特征学习可以比懒惰训练(通过随机特征内核或NTK)更糟糕,因为前者可以导致较少的神经表示。尽管已知稀疏性对于学习各向异性数据是必不可少的,但是当目标函数沿输入空间的某些方向恒定或平滑时,这是有害的。我们在两个设置中说明了这种现象:(i)在D维单元球体上的高斯随机函数的回归,以及(ii)图像基准数据集的分类。对于(i),我们通过训练点数来计算概括误差的缩放率,并证明即使输入空间的尺寸很大,不学习特征的方法也可以更好地推广。对于(ii),我们从经验上表明,学习特征确实会导致稀疏,从而减少图像预测因子的平滑表示。这一事实是可能导致性能恶化的,这与沿差异性的平滑度相关。
translated by 谷歌翻译
着名的工作系列(Barron,1993; Bresiman,1993; Klusowski&Barron,2018)提供了宽度$ N $的界限,所需的relu两层神经网络需要近似函数$ f $超过球。 \ mathcal {b} _r(\ mathbb {r} ^ d)$最终$ \ epsilon $,当傅立叶的数量$ c_f = \ frac {1} {(2 \ pi)^ {d / 2}} \ int _ {\ mathbb {r} ^ d} \ | \ xi \ | ^ 2 | \ hat {f}(\ xi)| \ d \ xi $是有限的。最近ongie等。 (2019)将Radon变换用作分析无限宽度Relu两层网络的工具。特别是,他们介绍了基于氡的$ \ mathcal {r} $ - norms的概念,并显示$ \ mathbb {r} ^ d $上定义的函数可以表示为无限宽度的双层神经网络如果只有在$ \ mathcal {r} $ - norm是有限的。在这项工作中,我们扩展了Ongie等人的框架。 (2019)并定义类似的基于氡的半规范($ \ mathcal {r},\ mathcal {r} $ - norms),使得函数承认在有界开放式$ \ mathcal上的无限宽度神经网络表示{ u} \ subseteq \ mathbb {r} ^ d $当它$ \ mathcal {r}时,\ mathcal {u} $ - norm是有限的。建立在这方面,我们派生稀疏(有限宽度)神经网络近似界,其优化Breiman(1993); Klusowski&Barron(2018)。最后,我们表明有限开放集的无限宽度神经网络表示不是唯一的,并研究其结构,提供模式连接的功能视图。
translated by 谷歌翻译
Deep Learning has significantly impacted the application of data-to-decision throughout research and industry, however, they lack a rigorous mathematical foundation, which creates situations where algorithmic results fail to be practically invertible. In this paper we present a nearly invertible mapping between $\mathbb{R}^{2^n}$ and $\mathbb{R}^{n+1}$ via a topological connection between $S^{2^n-1}$ and $S^n$. Throughout the paper we utilize the algebra of Multicomplex rotation groups and polyspherical coordinates to define two maps: the first is a contraction from $S^{2^n-1}$ to $\displaystyle \otimes^n_{k=1} SO(2)$, and the second is a projection from $\displaystyle \otimes^n_{k=1} SO(2)$ to $S^{n}$. Together these form a composite map that we call the LG Fibration. In analogy to the generation of Hopf Fibration using Hypercomplex geometry from $S^{(2n-1)} \mapsto CP^n$, our fibration uses Multicomplex geometry to project $S^{2^n-1}$ onto $S^n$. We also investigate the algebraic properties of the LG Fibration, ultimately deriving a distance difference function to determine which pairs of vectors have an invariant inner product under the transformation. The LG Fibration has applications to Machine Learning and AI, in analogy to the current applications of Hopf Fibrations in adaptive UAV control. Furthermore, the ability to invert the LG Fibration for nearly all elements allows for the development of Machine Learning algorithms that may avoid the issues of uncertainty and reproducibility that currently plague contemporary methods. The primary result of this paper is a novel method of nearly invertible geometric dimensional reduction from $S^{2^n-1}$ to $S^n$, which has the capability to extend the research in both mathematics and AI, including but not limited to the fields of homotopy groups of spheres, algebraic topology, machine learning, and algebraic biology.
translated by 谷歌翻译
我们提出了一种快速且数值准确的方法,用于扩展数字化的$ l \ times l $图像,代表$ [-1,1]^2 $在磁盘$ \ {x \ in \ in \ mathbb {r}^2:| |磁盘上的谐波(dirichlet laplacian eigenfunctions)中的x | <1 \} $。我们的方法以$ \ Mathcal {O}(l^2 \ log L)$操作运行。此基础也称为傅立叶贝塞尔基础,它具有多个计算优势:它是正交的,按频率订购,并且可以通过将对角线变换应用于系数来旋转,从而可以旋转图像。此外,我们表明,具有径向函数的卷积也可以通过将对角变换应用于系数进行有效计算。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
我们研究了具有由完全连接的神经网络产生的密度场的固体各向同性物质惩罚(SIMP)方法,将坐标作为输入。在大的宽度限制中,我们表明DNN的使用导致滤波效果类似于SIMP的传统过滤技术,具有由神经切线内核(NTK)描述的过滤器。然而,这种过滤器在翻译下不是不变的,导致视觉伪像和非最佳形状。我们提出了两个输入坐标的嵌入,导致NTK和滤波器的空间不变性。我们经验证实了我们的理论观察和研究了过滤器大小如何受网络架构的影响。我们的解决方案可以很容易地应用于任何其他基于坐标的生成方法。
translated by 谷歌翻译
机器学习的最近进步已经创造了利用一类基于坐标的神经网络来解决视觉计算问题的兴趣,该基于坐标的神经网络在空间和时间跨空间和时间的场景或对象的物理属性。我们称之为神经领域的这些方法已经看到在3D形状和图像的合成中成功应用,人体的动画,3D重建和姿势估计。然而,由于在短时间内的快速进展,许多论文存在,但尚未出现全面的审查和制定问题。在本报告中,我们通过提供上下文,数学接地和对神经领域的文学进行广泛综述来解决这一限制。本报告涉及两种维度的研究。在第一部分中,我们通过识别神经字段方法的公共组件,包括不同的表示,架构,前向映射和泛化方法来专注于神经字段的技术。在第二部分中,我们专注于神经领域的应用在视觉计算中的不同问题,超越(例如,机器人,音频)。我们的评论显示了历史上和当前化身的视觉计算中已覆盖的主题的广度,展示了神经字段方法所带来的提高的质量,灵活性和能力。最后,我们展示了一个伴随着贡献本综述的生活版本,可以由社区不断更新。
translated by 谷歌翻译
Koopman运算符是无限维的运算符,可全球线性化非线性动态系统,使其光谱信息可用于理解动态。然而,Koopman运算符可以具有连续的光谱和无限维度的子空间,使得它们的光谱信息提供相当大的挑战。本文介绍了具有严格融合的数据驱动算法,用于从轨迹数据计算Koopman运算符的频谱信息。我们引入了残余动态模式分解(ResDMD),它提供了第一种用于计算普通Koopman运算符的Spectra和PseudtoStra的第一种方案,无需光谱污染。使用解析器操作员和RESDMD,我们还计算与测量保存动态系统相关的光谱度量的平滑近似。我们证明了我们的算法的显式收敛定理,即使计算连续频谱和离散频谱的密度,也可以实现高阶收敛即使是混沌系统。我们展示了在帐篷地图,高斯迭代地图,非线性摆,双摆,洛伦茨系统和11美元延长洛伦兹系统的算法。最后,我们为具有高维状态空间的动态系统提供了我们的算法的核化变体。这使我们能够计算与具有20,046维状态空间的蛋白质分子的动态相关的光谱度量,并计算出湍流流过空气的误差界限的非线性Koopman模式,其具有雷诺数为$> 10 ^ 5 $。一个295,122维的状态空间。
translated by 谷歌翻译
在本说明中,我们研究了如何使用单个隐藏层和RELU激活的神经网络插值数据,该数据是从径向对称分布中的,目标标签1处的目标标签1和单位球外部0,如果单位球内没有标签。通过重量衰减正则化和无限神经元的无限数据限制,我们证明存在独特的径向对称最小化器,其重量衰减正常器和Lipschitz常数分别为$ d $和$ \ sqrt {d} $。我们此外表明,如果标签$ 1 $强加于半径$ \ varepsilon $,而不仅仅是源头,则重量衰减正规剂会在$ d $中成倍增长。相比之下,具有两个隐藏层的神经网络可以近似目标函数,而不会遇到维度的诅咒。
translated by 谷歌翻译
机器人社区在为软机器人设备建模提供的理论工具的复杂程度中看到了指数增长。已经提出了不同的解决方案以克服与软机器人建模相关的困难,通常利用其他科学学科,例如连续式机械和计算机图形。这些理论基础通常被认为是理所当然的,这导致复杂的文献,因此,从未得到完整审查的主题。Withing这种情况下,提交的文件的目标是双重的。突出显示涉及建模技术的不同系列的常见理论根源,采用统一语言,以简化其主要连接和差异的分析。因此,对上市接近自然如下,并最终提供在该领域的主要作品的完整,解开,审查。
translated by 谷歌翻译
许多物理系统由普通的或部分微分方程描述,其解决方案由复杂域中的全象或亚纯函数给出。在许多情况下,只有在纯虚拟JW轴上的各个点上只观察到这些功能的大小,因为它们的阶段的相干测量通常是昂贵的。然而,期望在可能的情况下从幅度中检索丢失的阶段。为此,我们提出了一种基于Blaschke产品的物理漏险的深神经网络,用于相位检索。灵感来自赫尔森和Sarason定理,我们使用Blaschke产品神经网络(BPNN)来恢复Blaschke产品的合理功能系数,基于输入作为输入的幅度观察。然后使用得到的Rational函数进行相位检索。我们将BPNN与常规深度神经网络(NNS)进行比较多相检索问题,包括合成和当代的现实世界问题(例如,数据收集需要大量专业知识的超材料,并且耗时)。在每个阶段检索问题上,我们与不同尺寸和超参数设置的传统NNS群体进行比较。即使没有任何超参数搜索,我们发现BPNNS始终如一地优于稀缺数据场景中优化NNS的群体,并且尽管模型更小。结果又可以应用于计算超材料的折射率,这是物质科学新兴领域的重要问题。
translated by 谷歌翻译
多项式扩张对于神经网络非线性的分析很重要。他们已应用于验证,解释性和安全性的众所周知的困难。现有方法跨度古典泰勒和切苯齐夫方法,渐近学和许多数值方法。我们发现,虽然这些单独具有有用的属性,如确切的错误公式,可调域和鲁棒性对未定义的衍生物,但没有提供一致方法,其具有所有这些属性的扩展。为解决此问题,我们开发了一个分析修改的积分变换扩展(AMITE),通过使用派生标准进行修改的整体变换的新型扩展。我们展示了一般的扩展,然后展示了两个流行的激活功能,双曲线切线和整流线性单位的应用。与本端使用的现有扩展(即Chebyshev,Taylor和Numerical)相比,Amite是第一个提供六个以前相互排斥的膨胀性能,例如系数的精确公式和精确的膨胀误差(表II)。我们展示了两种案例研究中Amite的有效性。首先,多变量多项式形式从单个隐藏层黑盒子多层Perceptron(MLP)有效地提取,以促进从嘈杂的刺激响应对的等效测试。其次,在3到7层之间的各种前馈神经网络(FFNN)架构是使用由Amite多项式和误差公式改善的泰勒模型的范围。 Amite呈现了一种新的扩展方法维度,适用于神经网络中的非线性的分析/近似,打开新的方向和机会,了解神经网络的理论分析和系统测试。
translated by 谷歌翻译
Models of stochastic image deformation allow study of time-continuous stochastic effects transforming images by deforming the image domain. Applications include longitudinal medical image analysis with both population trends and random subject specific variation. Focusing on a stochastic extension of the LDDMM models with evolutions governed by a stochastic EPDiff equation, we use moment approximations of the corresponding It\^o diffusion to construct estimators for statistical inference in the full stochastic model. We show that this approach, when efficiently implemented with automatic differentiation tools, can successfully estimate parameters encoding the spatial correlation of the noise fields on the image.
translated by 谷歌翻译
高斯过程可以说是空间统计中最重要的模型类别。他们编码有关建模功能的先前信息,可用于精确或近似贝叶斯推断。在许多应用中,尤其是在物理科学和工程中,以及在诸如地统计和神经科学等领域,对对称性的不变性是人们可以考虑的先前信息的最基本形式之一。高斯工艺与这种对称性的协方差的不变性导致了对此类空间平稳性概念的最自然概括。在这项工作中,我们开发了建设性和实用的技术,用于在在对称的背景下产生的一大批非欧基人空间上构建固定的高斯工艺。我们的技术使(i)以实用的方式计算(i)计算在此类空间上定义的先验和后高斯过程中的协方差内核和(ii)。这项工作分为两部分,每个部分涉及不同的技术考虑:第一部分研究紧凑的空间,而第二部分研究的非紧密空间具有某些结构。我们的贡献使我们研究的非欧亚人高斯流程模型与标准高斯流程软件包中可用的良好计算技术兼容,从而使从业者可以访问它们。
translated by 谷歌翻译
物理驱动的深度学习方法已成为计算磁共振成像(MRI)问题的强大工具,将重建性能推向新限制。本文概述了将物理信息纳入基于学习的MRI重建中的最新发展。我们考虑了用于计算MRI的线性和非线性正向模型的逆问题,并回顾了解决这些方法的经典方法。然后,我们专注于物理驱动的深度学习方法,涵盖了物理驱动的损失功能,插件方法,生成模型和展开的网络。我们重点介绍了特定于领域的挑战,例如神经网络的实现和复杂值的构建基块,以及具有线性和非线性正向模型的MRI转换应用。最后,我们讨论常见问题和开放挑战,并与物理驱动的学习与医学成像管道中的其他下游任务相结合时,与物理驱动的学习的重要性联系在一起。
translated by 谷歌翻译
内核Stein差异(KSD)是一种基于内核的广泛使用概率指标之间差异的非参数量度。它通常在用户从候选概率度量中收集的样本集合的情况下使用,并希望将它们与指定的目标概率度量进行比较。 KSD的一个有用属性是,它可以仅从候选度量的样本中计算出来,并且不知道目标度量的正常化常数。 KSD已用于一系列设置,包括合适的测试,参数推断,MCMC输出评估和生成建模。当前KSD方法论的两个主要问题是(i)超出有限维度欧几里得环境之外的适用性以及(ii)缺乏影响KSD性能的清晰度。本文提供了KSD的新频谱表示,这两种补救措施都使KSD适用于希尔伯特(Hilbert)评估数据,并揭示了内核和Stein oterator Choice对KSD的影响。我们通过在许多合成数据实验中对各种高斯和非高斯功能模型进行拟合优度测试来证明所提出的方法的功效。
translated by 谷歌翻译