多项式扩张对于神经网络非线性的分析很重要。他们已应用于验证,解释性和安全性的众所周知的困难。现有方法跨度古典泰勒和切苯齐夫方法,渐近学和许多数值方法。我们发现,虽然这些单独具有有用的属性,如确切的错误公式,可调域和鲁棒性对未定义的衍生物,但没有提供一致方法,其具有所有这些属性的扩展。为解决此问题,我们开发了一个分析修改的积分变换扩展(AMITE),通过使用派生标准进行修改的整体变换的新型扩展。我们展示了一般的扩展,然后展示了两个流行的激活功能,双曲线切线和整流线性单位的应用。与本端使用的现有扩展(即Chebyshev,Taylor和Numerical)相比,Amite是第一个提供六个以前相互排斥的膨胀性能,例如系数的精确公式和精确的膨胀误差(表II)。我们展示了两种案例研究中Amite的有效性。首先,多变量多项式形式从单个隐藏层黑盒子多层Perceptron(MLP)有效地提取,以促进从嘈杂的刺激响应对的等效测试。其次,在3到7层之间的各种前馈神经网络(FFNN)架构是使用由Amite多项式和误差公式改善的泰勒模型的范围。 Amite呈现了一种新的扩展方法维度,适用于神经网络中的非线性的分析/近似,打开新的方向和机会,了解神经网络的理论分析和系统测试。
translated by 谷歌翻译
神经网络的可解释性及其潜在的理论行为仍然是一个开放的学习领域,即使在实际应用的巨大成功之后,特别是在深度学习的出现。在这项工作中,提出了NN2Poly:一种理论方法,允许获得提供已经训练的深神经网络的替代表示的多项式。这扩展了ARXIV中提出的先前想法:2102.03865,其仅限于单个隐藏层神经网络,以便在回归和分类任务中使用任意深度前馈神经网络。本文的目的是通过在每层的激活函数上使用泰勒膨胀来实现,然后使用若干组合性质,允许识别所需多项式的系数。讨论了实现本理论方法时的主要计算限制,并介绍了NN2POLY工作所必需的神经网络权重的约束的示例。最后,呈现了一些模拟,得出结论,使用NN2Poly可以获得给定神经网络的表示,并且在所获得的预测之间具有低误差。
translated by 谷歌翻译
通过建立神经网络和内核方法之间的联系,无限宽度极限阐明了深度学习的概括和优化方面。尽管它们的重要性,但这些内核方法的实用性在大规模学习设置中受到限制,因为它们(超)二次运行时和内存复杂性。此外,大多数先前关于神经内核的作品都集中在relu激活上,这主要是由于其受欢迎程度,但这也是由于很难计算此类内核来进行一般激活。在这项工作中,我们通过提供进行一般激活的方法来克服此类困难。首先,我们编译和扩展激活功能的列表,该函数允许精确的双重激活表达式计算神经内核。当确切的计算未知时,我们提出有效近似它们的方法。我们提出了一种快速的素描方法,该方法近似于任何多种多层神经网络高斯过程(NNGP)内核和神经切线核(NTK)矩阵,以实现广泛的激活功能,这超出了常见的经过分析的RELU激活。这是通过显示如何使用任何所需激活函​​数的截短的Hermite膨胀来近似神经内核来完成的。虽然大多数先前的工作都需要单位球体上的数据点,但我们的方法不受此类限制的影响,并且适用于$ \ Mathbb {r}^d $中的任何点数据集。此外,我们为NNGP和NTK矩阵提供了一个子空间嵌入,具有接近输入的距离运行时和接近最佳的目标尺寸,该目标尺寸适用于任何\ EMPH {均质}双重激活功能,具有快速收敛的Taylor膨胀。从经验上讲,关于精确的卷积NTK(CNTK)计算,我们的方法可实现$ 106 \ times $速度,用于在CIFAR-10数据集上的5层默特网络的近似CNTK。
translated by 谷歌翻译
这项调查的目的是介绍对深神经网络的近似特性的解释性回顾。具体而言,我们旨在了解深神经网络如何以及为什么要优于其他经典线性和非线性近似方法。这项调查包括三章。在第1章中,我们回顾了深层网络及其组成非线性结构的关键思想和概念。我们通过在解决回归和分类问题时将其作为优化问题来形式化神经网络问题。我们简要讨论用于解决优化问题的随机梯度下降算法以及用于解决优化问题的后传播公式,并解决了与神经网络性能相关的一些问题,包括选择激活功能,成本功能,过度适应问题和正则化。在第2章中,我们将重点转移到神经网络的近似理论上。我们首先介绍多项式近似中的密度概念,尤其是研究实现连续函数的Stone-WeierStrass定理。然后,在线性近似的框架内,我们回顾了馈电网络的密度和收敛速率的一些经典结果,然后在近似Sobolev函数中进行有关深网络复杂性的最新发展。在第3章中,利用非线性近似理论,我们进一步详细介绍了深度和近似网络与其他经典非线性近似方法相比的近似优势。
translated by 谷歌翻译
我们提出了Polar,A \ textbf {pol} ynomial \ textbf {ar} iThmetic框架,该框架利用多项式过度应用与间隔剩余的剩余,以进行界限时间到达的到达时间到达,对神经网络控制系统(NNCSS)的界限到达。与使用标准泰勒模型的现有算术方法相比,我们的框架使用一种新颖的方法来迭代过度陈化神经元的输出范围逐层范围均与伯恩斯坦多项式插值的组合,用于连续激活功能和其他操作的泰勒模型。这种方法可以克服标准泰勒模型算术中的主要缺点,即无法处理泰勒多项式无法很好地近似的功能,并显着提高了NNCS的可及状态计算的准确性和效率。为了进一步拧紧过度应用,我们的方法在估计神经网络的输出范围时,将泰勒模型保持在线性映射下的象征性。我们表明,极性可以与现有的泰勒模型流管构造技术无缝集成,并证明极性在一组基准测试套件上明显优于当前最新技术。
translated by 谷歌翻译
我们提出了一种新的方法,可以通过具有relu,sigmoid或双曲线切线激活功能的神经网络有效地计算图像的紧密非凸面。特别是,我们通过多项式近似来抽象每个神经元的输入输出关系,该近似是使用多项式界定的基于设定的方式进行评估的。我们提出的方法特别适合于对神经网络控制系统的可及性分析,因为多项式地位型能够捕获两者中的非共鸣性,通过神经网络以及可触及的集合。与各种基准系统上的其他最新方法相比,我们证明了方法的卓越性能。
translated by 谷歌翻译
We present a new algorithm for automatically bounding the Taylor remainder series. In the special case of a scalar function $f: \mathbb{R} \mapsto \mathbb{R}$, our algorithm takes as input a reference point $x_0$, trust region $[a, b]$, and integer $k \ge 0$, and returns an interval $I$ such that $f(x) - \sum_{i=0}^k \frac {f^{(i)}(x_0)} {i!} (x - x_0)^i \in I (x - x_0)^{k+1}$ for all $x \in [a, b]$. As in automatic differentiation, the function $f$ is provided to the algorithm in symbolic form, and must be composed of known elementary functions. At a high level, our algorithm has two steps. First, for a variety of commonly-used elementary functions (e.g., $\exp$, $\log$), we derive sharp polynomial upper and lower bounds on the Taylor remainder series. We then recursively combine the bounds for the elementary functions using an interval arithmetic variant of Taylor-mode automatic differentiation. Our algorithm can make efficient use of machine learning hardware accelerators, and we provide an open source implementation in JAX. We then turn our attention to applications. Most notably, we use our new machinery to create the first universal majorization-minimization optimization algorithms: algorithms that iteratively minimize an arbitrary loss using a majorizer that is derived automatically, rather than by hand. Applied to machine learning, this leads to architecture-specific optimizers for training deep networks that converge from any starting point, without hyperparameter tuning. Our experiments show that for some optimization problems, these hyperparameter-free optimizers outperform tuned versions of gradient descent, Adam, and AdaGrad. We also show that our automatically-derived bounds can be used for verified global optimization and numerical integration, and to prove sharper versions of Jensen's inequality.
translated by 谷歌翻译
本文提出了一种新的可达性分析工具,用于计算给定输入不确定性下的前馈神经网络的输出集的间隔过度近似。所提出的方法适应神经网络的现有混合单调性方法,用于可动力分析的动态系统,并将其应用于给定神经网络内的所有可能的部分网络。这确保了所获得的结果的交叉点是可以使用混合单调性获得的每层输出的最紧密的间隔过度近似。与文献中的其他工具相比,专注于小类分段 - 仿射或单调激活功能,我们方法的主要优势是其普遍性,它可以处理具有任何嘴唇智能连续激活功能的神经网络。此外,所提出的框架的简单性允许用户通过简单地提供函数,衍生和全局极值以及衍生物的相应参数来非常容易地添加未实现的激活功能。我们的算法经过测试,并将其与1000个随机生成的神经网络上的五个基于间隔的工具进行了比较,用于四个激活功能(Relu,Tanh,Elu,Silu)。我们表明我们的工具总是优于间隔绑定的传播方法,并且我们获得比Reluval,神经化,Verinet和Crown(适用于案件的时)更严格的输出界限。
translated by 谷歌翻译
我们为特殊神经网络架构,称为运营商复发性神经网络的理论分析,用于近似非线性函数,其输入是线性运算符。这些功能通常在解决方案算法中出现用于逆边值问题的问题。传统的神经网络将输入数据视为向量,因此它们没有有效地捕获与对应于这种逆问题中的数据的线性运算符相关联的乘法结构。因此,我们介绍一个类似标准的神经网络架构的新系列,但是输入数据在向量上乘法作用。由较小的算子出现在边界控制中的紧凑型操作员和波动方程的反边值问题分析,我们在网络中的选择权重矩阵中促进结构和稀疏性。在描述此架构后,我们研究其表示属性以及其近似属性。我们还表明,可以引入明确的正则化,其可以从所述逆问题的数学分析导出,并导致概括属性上的某些保证。我们观察到重量矩阵的稀疏性改善了概括估计。最后,我们讨论如何将运营商复发网络视为深度学习模拟,以确定诸如用于从边界测量的声波方程中重建所未知的WAVESTED的边界控制的算法算法。
translated by 谷歌翻译
神经网络已广泛应用于垃圾邮件和网络钓鱼检测,入侵预防和恶意软件检测等安全应用程序。但是,这种黑盒方法通常在应用中具有不确定性和不良的解释性。此外,神经网络本身通常容易受到对抗攻击的影响。由于这些原因,人们对可信赖和严格的方法有很高的需求来验证神经网络模型的鲁棒性。对抗性的鲁棒性在处理恶意操纵输入时涉及神经网络的可靠性,是安全和机器学习中最热门的主题之一。在这项工作中,我们在神经网络的对抗性鲁棒性验证中调查了现有文献,并在机器学习,安全和软件工程领域收集了39项多元化研究工作。我们系统地分析了它们的方法,包括如何制定鲁棒性,使用哪种验证技术以及每种技术的优势和局限性。我们从正式验证的角度提供分类学,以全面理解该主题。我们根据财产规范,减少问题和推理策略对现有技术进行分类。我们还展示了使用样本模型在现有研究中应用的代表性技术。最后,我们讨论了未来研究的开放问题。
translated by 谷歌翻译
深度神经网络的鲁棒性对于现代AI支持系统至关重要,应正式验证。在广泛的应用中采用了类似乙状结肠的神经网络。由于它们的非线性,通常会过度评估乙状结肠样激活功能,以进行有效的验证,这不可避免地引入了不精确度。已大量的努力致力于找到所谓的更紧密的近似值,以获得更精确的验证结果。但是,现有的紧密定义是启发式的,缺乏理论基础。我们对现有神经元的紧密表征进行了彻底的经验分析,并揭示它们仅在特定的神经网络上是优越的。然后,我们将网络紧密度的概念介绍为统一的紧密度定义,并表明计算网络紧密度是一个复杂的非convex优化问题。我们通过两个有效的,最紧密的近似值从不同的角度绕过复杂性。结果表明,我们在艺术状态下的方法实现了有希望的表现:(i)达到高达251.28%的改善,以提高认证的较低鲁棒性界限; (ii)在卷积网络上表现出更为精确的验证结果。
translated by 谷歌翻译
多项式网络(PNS)最近在面部和图像识别方面表现出了有希望的表现。但是,PNS的鲁棒性尚不清楚,因此获得证书对于使其在现实世界应用中的采用至关重要。基于分支和绑定(BAB)技术的Relu神经网络(NNS)上的现有验证算法不能微不足道地应用于PN验证。在这项工作中,我们设计了一种新的边界方法,该方法配备了BAB,用于全球融合保证,称为VPN。一个关键的见解是,我们获得的边界比间隔结合的传播基线更紧密。这可以通过MNIST,CIFAR10和STL10数据集的经验验证进行声音和完整的PN验证。我们认为我们的方法对NN验证具有自身的兴趣。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
受生物神经元的启发,激活功能在许多现实世界中常用的任何人工神经网络的学习过程中起着重要作用。文献中已经提出了各种激活功能,用于分类和回归任务。在这项工作中,我们调查了过去已经使用的激活功能以及当前的最新功能。特别是,我们介绍了多年来激活功能的各种发展以及这些激活功能的优势以及缺点或局限性。我们还讨论了经典(固定)激活功能,包括整流器单元和自适应激活功能。除了基于表征的激活函数的分类法外,还提出了基于应用的激活函数的分类法。为此,对MNIST,CIFAR-10和CIFAR-100等分类数据集进行了各种固定和自适应激活函数的系统比较。近年来,已经出现了一个具有物理信息的机器学习框架,以解决与科学计算有关的问题。为此,我们还讨论了在物理知识的机器学习框架中使用的激活功能的各种要求。此外,使用Tensorflow,Pytorch和Jax等各种机器学习库之间进行了不同的固定和自适应激活函数进行各种比较。
translated by 谷歌翻译
我们表明,$ d $ variate $ r $的多项式可以在$ [0,1]^d $上表示为width的浅神经网络$ d+1+\ sum_ {r = 2}^r \ binom {r \ binom {R+D-1} {D-1} [\ binom {R+D-1} {D-1} +1] $。同样,通过SNN表示单变量$ c^\ beta $ - 平滑函数的局部泰勒多项式,我们为浅网络得出了最小的收敛速率,最高为对数因子,以达到未知的单变量回归函数。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
我们研究了具有神经网络控制器(NNC)的闭环动态系统的验证问题。此问题通常还原为计算可达状态集。在考虑动态系统和神经网络的隔离时,基于分别称为泰勒模型和Zonotopes的集合表示,该任务存在精确的方法。然而,这些方法对NNC的组合是非微不足道的,因为当在集合表示之间转换时,依赖性信息在每个控制周期中丢失,并且累积的近似误差快速使结果呈现。我们提出了一种基于泰勒模型和ZONotopes的链接近算法,得到了NNC的精确可达性算法。因为该算法仅在孤立方法的界面上起作用,所以适用于一般动态系统和神经网络,可以从这些领域的未来进展中受益。我们的实施提供了最先进的绩效,是第一个成功分析NNC年可达性竞争的所有基准问题。
translated by 谷歌翻译
These notes were compiled as lecture notes for a course developed and taught at the University of the Southern California. They should be accessible to a typical engineering graduate student with a strong background in Applied Mathematics. The main objective of these notes is to introduce a student who is familiar with concepts in linear algebra and partial differential equations to select topics in deep learning. These lecture notes exploit the strong connections between deep learning algorithms and the more conventional techniques of computational physics to achieve two goals. First, they use concepts from computational physics to develop an understanding of deep learning algorithms. Not surprisingly, many concepts in deep learning can be connected to similar concepts in computational physics, and one can utilize this connection to better understand these algorithms. Second, several novel deep learning algorithms can be used to solve challenging problems in computational physics. Thus, they offer someone who is interested in modeling a physical phenomena with a complementary set of tools.
translated by 谷歌翻译
我们提出了一种惩罚的非参数方法,以使用整流器二次单元(REEND)激活了深层神经网络,以估计不可分割的模型中的分位数回归过程(QRP),并引入了新的惩罚函数,以实施对瓦解回归曲线的非交叉。我们为估计的QRP建立了非反应过量的风险界限,并在轻度平滑度和规律性条件下得出估计的QRP的平均综合平方误差。为了建立这些非反应风险和估计误差范围,我们还使用$ s> 0 $及其衍生物及其衍生物使用所需的激活的神经网络开发了一个新的错误,用于近似$ c^s $平滑功能。这是必需网络的新近似结果,并且具有独立的兴趣,并且可能在其他问题中有用。我们的数值实验表明,所提出的方法具有竞争性或胜过两种现有方法,包括使用再现核和随机森林的方法,用于非参数分位数回归。
translated by 谷歌翻译
In this work, we demonstrate the offline FPGA realization of both recurrent and feedforward neural network (NN)-based equalizers for nonlinearity compensation in coherent optical transmission systems. First, we present a realization pipeline showing the conversion of the models from Python libraries to the FPGA chip synthesis and implementation. Then, we review the main alternatives for the hardware implementation of nonlinear activation functions. The main results are divided into three parts: a performance comparison, an analysis of how activation functions are implemented, and a report on the complexity of the hardware. The performance in Q-factor is presented for the cases of bidirectional long-short-term memory coupled with convolutional NN (biLSTM + CNN) equalizer, CNN equalizer, and standard 1-StpS digital back-propagation (DBP) for the simulation and experiment propagation of a single channel dual-polarization (SC-DP) 16QAM at 34 GBd along 17x70km of LEAF. The biLSTM+CNN equalizer provides a similar result to DBP and a 1.7 dB Q-factor gain compared with the chromatic dispersion compensation baseline in the experimental dataset. After that, we assess the Q-factor and the impact of hardware utilization when approximating the activation functions of NN using Taylor series, piecewise linear, and look-up table (LUT) approximations. We also show how to mitigate the approximation errors with extra training and provide some insights into possible gradient problems in the LUT approximation. Finally, to evaluate the complexity of hardware implementation to achieve 400G throughput, fixed-point NN-based equalizers with approximated activation functions are developed and implemented in an FPGA.
translated by 谷歌翻译