我们提出了Polar,A \ textbf {pol} ynomial \ textbf {ar} iThmetic框架,该框架利用多项式过度应用与间隔剩余的剩余,以进行界限时间到达的到达时间到达,对神经网络控制系统(NNCSS)的界限到达。与使用标准泰勒模型的现有算术方法相比,我们的框架使用一种新颖的方法来迭代过度陈化神经元的输出范围逐层范围均与伯恩斯坦多项式插值的组合,用于连续激活功能和其他操作的泰勒模型。这种方法可以克服标准泰勒模型算术中的主要缺点,即无法处理泰勒多项式无法很好地近似的功能,并显着提高了NNCS的可及状态计算的准确性和效率。为了进一步拧紧过度应用,我们的方法在估计神经网络的输出范围时,将泰勒模型保持在线性映射下的象征性。我们表明,极性可以与现有的泰勒模型流管构造技术无缝集成,并证明极性在一组基准测试套件上明显优于当前最新技术。
translated by 谷歌翻译
我们研究了具有神经网络控制器(NNC)的闭环动态系统的验证问题。此问题通常还原为计算可达状态集。在考虑动态系统和神经网络的隔离时,基于分别称为泰勒模型和Zonotopes的集合表示,该任务存在精确的方法。然而,这些方法对NNC的组合是非微不足道的,因为当在集合表示之间转换时,依赖性信息在每个控制周期中丢失,并且累积的近似误差快速使结果呈现。我们提出了一种基于泰勒模型和ZONotopes的链接近算法,得到了NNC的精确可达性算法。因为该算法仅在孤立方法的界面上起作用,所以适用于一般动态系统和神经网络,可以从这些领域的未来进展中受益。我们的实施提供了最先进的绩效,是第一个成功分析NNC年可达性竞争的所有基准问题。
translated by 谷歌翻译
我们提出了一种新的方法,可以通过具有relu,sigmoid或双曲线切线激活功能的神经网络有效地计算图像的紧密非凸面。特别是,我们通过多项式近似来抽象每个神经元的输入输出关系,该近似是使用多项式界定的基于设定的方式进行评估的。我们提出的方法特别适合于对神经网络控制系统的可及性分析,因为多项式地位型能够捕获两者中的非共鸣性,通过神经网络以及可触及的集合。与各种基准系统上的其他最新方法相比,我们证明了方法的卓越性能。
translated by 谷歌翻译
在过去的几年中,连续的深度学习模型(称为神经普通微分方程(神经odes))受到了广泛关注。尽管它们迅速产生影响,但对于这些系统缺乏正式的分析技术。在本文中,我们考虑了具有不同架构和层次的一般神经odes类,并引入了一种新颖的可及性框架,可以对其行为进行正式分析。为神经ODE的可及性分析而开发的方法是在称为NNVODE的新工具中实现的。具体而言,我们的工作扩展了现有的神经网络验证工具以支持神经ODE。我们通过分析包括用于分类的神经ODE的一组基准以及控制和动态系统的一组基准来证明我们方法的功能和功效,包括评估我们方法对我们方法在现有软件工具中的功效和能力的评估。如果可以这样做,则连续的时间系统可达性文献。
translated by 谷歌翻译
神经网络(NNS)已成功地用于代表复杂动力学系统的状态演变。这样的模型,称为NN动态模型(NNDMS),使用NN的迭代噪声预测来估计随时间推移系统轨迹的分布。尽管它们的准确性,但对NNDMS的安全分析仍然是一个具有挑战性的问题,并且在很大程度上尚未探索。为了解决这个问题,在本文中,我们介绍了一种为NNDM提供安全保证的方法。我们的方法基于随机屏障函数,其与安全性的关系类似于Lyapunov功能的稳定性。我们首先展示了通过凸优化问题合成NNDMS随机屏障函数的方法,该问题又为系统的安全概率提供了下限。我们方法中的一个关键步骤是,NNS的最新凸近似结果的利用是找到零件线性边界,这允许将屏障函数合成问题作为一个方形优化程序的制定。如果获得的安全概率高于所需的阈值,则该系统将获得认证。否则,我们引入了一种生成控制系统的方法,该系统以最小的侵入性方式稳健地最大化安全概率。我们利用屏障函数的凸属性来提出最佳控制合成问题作为线性程序。实验结果说明了该方法的功效。即,他们表明该方法可以扩展到具有多层和数百个神经元的多维NNDM,并且控制器可以显着提高安全性概率。
translated by 谷歌翻译
安全至关重要的应用中神经网络(NNS)的患病率的增加,要求采用证明安全行为的方法。本文提出了一种向后的可及性方法,以安全验证神经反馈循环(NFLS),即具有NN控制策略的闭环系统。尽管最近的作品集中在远程达到NFL的安全认证策略上,但落后性能比远期策略具有优势,尤其是在避免障碍的情况下。先前的工作已经开发了用于无NNS系统的向后可及性分析的技术,但是由于其激活功能的非线性,反馈回路中的NNS存在唯一的问题,并且由于NN模型通常不可逆转。为了克服这些挑战,我们使用现有的NN分析工具有效地找到了对反射(BP)集的过度评估,即NN控制策略将将系统驱动到给定目标集的状态集。我们介绍了用于计算以馈电NN表示的控制策略的线性和非线性系统的BP过度评估的框架,并提出了计算有效的策略。我们使用各种模型的数值结果来展示所提出的算法,包括6D系统的安全认证。
translated by 谷歌翻译
多项式扩张对于神经网络非线性的分析很重要。他们已应用于验证,解释性和安全性的众所周知的困难。现有方法跨度古典泰勒和切苯齐夫方法,渐近学和许多数值方法。我们发现,虽然这些单独具有有用的属性,如确切的错误公式,可调域和鲁棒性对未定义的衍生物,但没有提供一致方法,其具有所有这些属性的扩展。为解决此问题,我们开发了一个分析修改的积分变换扩展(AMITE),通过使用派生标准进行修改的整体变换的新型扩展。我们展示了一般的扩展,然后展示了两个流行的激活功能,双曲线切线和整流线性单位的应用。与本端使用的现有扩展(即Chebyshev,Taylor和Numerical)相比,Amite是第一个提供六个以前相互排斥的膨胀性能,例如系数的精确公式和精确的膨胀误差(表II)。我们展示了两种案例研究中Amite的有效性。首先,多变量多项式形式从单个隐藏层黑盒子多层Perceptron(MLP)有效地提取,以促进从嘈杂的刺激响应对的等效测试。其次,在3到7层之间的各种前馈神经网络(FFNN)架构是使用由Amite多项式和误差公式改善的泰勒模型的范围。 Amite呈现了一种新的扩展方法维度,适用于神经网络中的非线性的分析/近似,打开新的方向和机会,了解神经网络的理论分析和系统测试。
translated by 谷歌翻译
We present a new algorithm for automatically bounding the Taylor remainder series. In the special case of a scalar function $f: \mathbb{R} \mapsto \mathbb{R}$, our algorithm takes as input a reference point $x_0$, trust region $[a, b]$, and integer $k \ge 0$, and returns an interval $I$ such that $f(x) - \sum_{i=0}^k \frac {f^{(i)}(x_0)} {i!} (x - x_0)^i \in I (x - x_0)^{k+1}$ for all $x \in [a, b]$. As in automatic differentiation, the function $f$ is provided to the algorithm in symbolic form, and must be composed of known elementary functions. At a high level, our algorithm has two steps. First, for a variety of commonly-used elementary functions (e.g., $\exp$, $\log$), we derive sharp polynomial upper and lower bounds on the Taylor remainder series. We then recursively combine the bounds for the elementary functions using an interval arithmetic variant of Taylor-mode automatic differentiation. Our algorithm can make efficient use of machine learning hardware accelerators, and we provide an open source implementation in JAX. We then turn our attention to applications. Most notably, we use our new machinery to create the first universal majorization-minimization optimization algorithms: algorithms that iteratively minimize an arbitrary loss using a majorizer that is derived automatically, rather than by hand. Applied to machine learning, this leads to architecture-specific optimizers for training deep networks that converge from any starting point, without hyperparameter tuning. Our experiments show that for some optimization problems, these hyperparameter-free optimizers outperform tuned versions of gradient descent, Adam, and AdaGrad. We also show that our automatically-derived bounds can be used for verified global optimization and numerical integration, and to prove sharper versions of Jensen's inequality.
translated by 谷歌翻译
深度神经网络的鲁棒性对于现代AI支持系统至关重要,应正式验证。在广泛的应用中采用了类似乙状结肠的神经网络。由于它们的非线性,通常会过度评估乙状结肠样激活功能,以进行有效的验证,这不可避免地引入了不精确度。已大量的努力致力于找到所谓的更紧密的近似值,以获得更精确的验证结果。但是,现有的紧密定义是启发式的,缺乏理论基础。我们对现有神经元的紧密表征进行了彻底的经验分析,并揭示它们仅在特定的神经网络上是优越的。然后,我们将网络紧密度的概念介绍为统一的紧密度定义,并表明计算网络紧密度是一个复杂的非convex优化问题。我们通过两个有效的,最紧密的近似值从不同的角度绕过复杂性。结果表明,我们在艺术状态下的方法实现了有希望的表现:(i)达到高达251.28%的改善,以提高认证的较低鲁棒性界限; (ii)在卷积网络上表现出更为精确的验证结果。
translated by 谷歌翻译
本文提出了一种新的可达性分析工具,用于计算给定输入不确定性下的前馈神经网络的输出集的间隔过度近似。所提出的方法适应神经网络的现有混合单调性方法,用于可动力分析的动态系统,并将其应用于给定神经网络内的所有可能的部分网络。这确保了所获得的结果的交叉点是可以使用混合单调性获得的每层输出的最紧密的间隔过度近似。与文献中的其他工具相比,专注于小类分段 - 仿射或单调激活功能,我们方法的主要优势是其普遍性,它可以处理具有任何嘴唇智能连续激活功能的神经网络。此外,所提出的框架的简单性允许用户通过简单地提供函数,衍生和全局极值以及衍生物的相应参数来非常容易地添加未实现的激活功能。我们的算法经过测试,并将其与1000个随机生成的神经网络上的五个基于间隔的工具进行了比较,用于四个激活功能(Relu,Tanh,Elu,Silu)。我们表明我们的工具总是优于间隔绑定的传播方法,并且我们获得比Reluval,神经化,Verinet和Crown(适用于案件的时)更严格的输出界限。
translated by 谷歌翻译
我们在非常严重的数据限制下开发一种基于学习的动态系统的控制算法。具体地,该算法只能从单个和正在进行的试验中访问流和嘈杂的数据。它通过有效地利用有关动力学的各种形式的侧面信息来实现这种性能,以降低样本复杂性。这些侧面信息通常来自系统的基本定律和系统的定性特性。更确切地说,该算法大致解决了编码系统所需行为的最佳控制问题。为此,它构建并迭代地改进数据驱动的差分包容,其包含动态的未知矢量字段。在间隔泰勒的方法中使用的差分包容使得能够过度近似于系统可能达到的状态。从理论上讲,我们在具有已知动态的最佳控制的最佳控制的近似解的次优化上建立了界限。我们展示了试验或更侧面信息的时间越长,界限更严格。凭经验,在高保真F-16飞机模拟器和Mujoco的环境中的实验说明,尽管数据稀缺,但算法可以提供与培训数百万环境相互作用的增强学习算法相当的性能。此外,我们表明该算法优于系统识别和模型预测控制的现有技术。
translated by 谷歌翻译
在本文中,我们考虑了由整流的线性单元(RELU)两级晶格(TLL)神经网络(NN)控制器控制的线性时间不变(LTI)系统的可触时集合的计算复杂性。特别是,我们表明,对于这样的系统和控制器,可以按照TLL NN控制器的大小(神经元数)的大小计算多项式时间的确切一步设置。此外,我们表明可以通过两种多项式时间方法获得可触及设置的紧密边界框:一个在TLL的大小中具有多项式复杂性,另一个具有控制器和其他的Lipschitz常数中的多项式复杂性问题参数。至关重要的是,可以在多项式时间内确定两者中的较小,对于非脱位tll nns。最后,我们提出了一种务实的算法,该算法将(半)确切可及性和近似可达性的好处(我们称为L-tllbox)结合在一起。我们通过经验比较与最先进的NN控制器可及性工具一起评估L-Tllbox。在这些实验中,L-TLLBox能够在同一网络/系统上的该工具快5000倍,同时生产到区域面积的0.08至1.42倍的范围。
translated by 谷歌翻译
我们介绍了一种新的随机验证算法,该算法正式地定量了配制成连续深度模型的任何连续过程的行为稳健性。我们的算法在给定的时间范围内解决了一组全局优化(GO)问题,以构造从初始状态的球开始的所有处理执行集的紧密机箱(管)。我们称我们的算法GoTube。通过其结构,GoTube确保边界管保守达到所需的概率和最高的紧密性。 GoTube以JAX实现,并优化以扩展到复杂的连续深度神经网络模型。与用于时间持续神经网络的高级可达性分析工具相比,GoTube不会在时间步骤之间积累过度估计误差,并避免符号技术中固有的臭名昭着包装效果。我们展示了GOTUBE在初始球,速度,时间 - 地平线,任务完成和大量实验中的可扩展性方面表现出最先进的验证工具。 GOTUBE是稳定的,并在其能够扩展到以前可能的视野的能力方面来设置最先进的。
translated by 谷歌翻译
Over-approximating the reachable sets of dynamical systems is a fundamental problem in safety verification and robust control synthesis. The representation of these sets is a key factor that affects the computational complexity and the approximation error. In this paper, we develop a new approach for over-approximating the reachable sets of neural network dynamical systems using adaptive template polytopes. We use the singular value decomposition of linear layers along with the shape of the activation functions to adapt the geometry of the polytopes at each time step to the geometry of the true reachable sets. We then propose a branch-and-bound method to compute accurate over-approximations of the reachable sets by the inferred templates. We illustrate the utility of the proposed approach in the reachability analysis of linear systems driven by neural network controllers.
translated by 谷歌翻译
这项调查的目的是介绍对深神经网络的近似特性的解释性回顾。具体而言,我们旨在了解深神经网络如何以及为什么要优于其他经典线性和非线性近似方法。这项调查包括三章。在第1章中,我们回顾了深层网络及其组成非线性结构的关键思想和概念。我们通过在解决回归和分类问题时将其作为优化问题来形式化神经网络问题。我们简要讨论用于解决优化问题的随机梯度下降算法以及用于解决优化问题的后传播公式,并解决了与神经网络性能相关的一些问题,包括选择激活功能,成本功能,过度适应问题和正则化。在第2章中,我们将重点转移到神经网络的近似理论上。我们首先介绍多项式近似中的密度概念,尤其是研究实现连续函数的Stone-WeierStrass定理。然后,在线性近似的框架内,我们回顾了馈电网络的密度和收敛速率的一些经典结果,然后在近似Sobolev函数中进行有关深网络复杂性的最新发展。在第3章中,利用非线性近似理论,我们进一步详细介绍了深度和近似网络与其他经典非线性近似方法相比的近似优势。
translated by 谷歌翻译
我们提出了一种使用神经网络反馈控制器对封闭环控制系统进行状态空间探索的新技术。我们的方法涉及近似闭环动力学轨迹的灵敏度。使用这样的近似器和系统模拟器,我们提出了一种指导状态空间探索方法,该方法可以生成在指定时间访问目标状态附近的轨迹。我们提出了一个理论框架,该框架确定我们的方法将产生一系列轨迹,该轨迹将到达目标状态的合适邻居。我们通过不同配置的神经网络反馈控制器对各种系统进行彻底评估。我们的表现优于早期的状态空间探索技术,并在质量(解释性)和性能(收敛速度)方面取得了显着改善。最后,我们采用算法来伪造一类时间逻辑规范,评估其针对最先进的伪造工具的绩效,并表现出其在补充现有的伪造算法方面的潜力。
translated by 谷歌翻译
随着深度学习在关键任务系统中的越来越多的应用,越来越需要对神经网络的行为进行正式保证。确实,最近提出了许多用于验证神经网络的方法,但是这些方法通常以有限的可伸缩性或不足的精度而挣扎。许多最先进的验证方案中的关键组成部分是在网络中可以为特定输入域获得的神经元获得的值计算下限和上限 - 并且这些界限更紧密,验证的可能性越大,验证的可能性就越大。成功。计算这些边界的许多常见算法是符号结合传播方法的变化。其中,利用一种称为后替代的过程的方法特别成功。在本文中,我们提出了一种使背部替代产生更严格的界限的方法。为了实现这一目标,我们制定并最大程度地减少背部固定过程中发生的不精确错误。我们的技术是一般的,从某种意义上说,它可以将其集成到许多现有的符号结合的传播技术中,并且只有较小的修改。我们将方法作为概念验证工具实施,并且与执行背部替代的最先进的验证者相比,取得了有利的结果。
translated by 谷歌翻译
While deep neural networks (DNNs) have demonstrated impressive performance in solving many challenging tasks, they are limited to resource-constrained devices owing to their demand for computation power and storage space. Quantization is one of the most promising techniques to address this issue by quantizing the weights and/or activation tensors of a DNN into lower bit-width fixed-point numbers. While quantization has been empirically shown to introduce minor accuracy loss, it lacks formal guarantees on that, especially when the resulting quantized neural networks (QNNs) are deployed in safety-critical applications. A majority of existing verification methods focus exclusively on individual neural networks, either DNNs or QNNs. While promising attempts have been made to verify the quantization error bound between DNNs and their quantized counterparts, they are not complete and more importantly do not support fully quantified neural networks, namely, only weights are quantized. To fill this gap, in this work, we propose a quantization error bound verification method (QEBVerif), where both weights and activation tensors are quantized. QEBVerif consists of two analyses: a differential reachability analysis (DRA) and a mixed-integer linear programming (MILP) based verification method. DRA performs difference analysis between the DNN and its quantized counterpart layer-by-layer to efficiently compute a tight quantization error interval. If it fails to prove the error bound, then we encode the verification problem into an equivalent MILP problem which can be solved by off-the-shelf solvers. Thus, QEBVerif is sound, complete, and arguably efficient. We implement QEBVerif in a tool and conduct extensive experiments, showing its effectiveness and efficiency.
translated by 谷歌翻译
Neural networks are increasingly applied in safety critical domains, their verification thus is gaining importance. A large class of recent algorithms for proving input-output relations of feed-forward neural networks are based on linear relaxations and symbolic interval propagation. However, due to variable dependencies, the approximations deteriorate with increasing depth of the network. In this paper we present DPNeurifyFV, a novel branch-and-bound solver for ReLU networks with low dimensional input-space that is based on symbolic interval propagation with fresh variables and input-splitting. A new heuristic for choosing the fresh variables allows to ameliorate the dependency problem, while our novel splitting heuristic, in combination with several other improvements, speeds up the branch-and-bound procedure. We evaluate our approach on the airborne collision avoidance networks ACAS Xu and demonstrate runtime improvements compared to state-of-the-art tools.
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译