交叉路口是自动驾驶任务最具挑战性的场景之一。由于复杂性和随机性,在相交处的基本应用(例如行为建模,运动预测,安全验证等)在很大程度上取决于数据驱动的技术。因此,交叉点中对流量参与者(TPS)的轨迹数据集的需求很大。目前,城市地区的大多数交叉路口都配备了交通信号灯。但是,尚无用于信号交叉点的大规模,高质量,公开可用的轨迹数据集。因此,在本文中,在中国天津选择了典型的两相信号交叉点。此外,管道旨在构建信号交叉数据集(SIND),其中包含7个小时的记录,其中包括13,000多种TPS,具有7种类型。然后,记录了信德的交通违规行为。此外,也将信德与其他类似作品进行比较。 SIND的特征可以概括如下:1)信德提供了更全面的信息,包括交通信号灯状态,运动参数,高清(HD)地图等。2)TPS的类别是多种多样和特征的,其中比例是脆弱的道路使用者(VRU)最高为62.6%3)显示了多次交通信号灯违反非电动车辆的行为。我们认为,Sind将是对现有数据集的有效补充,可以促进有关自动驾驶的相关研究。该数据集可通过以下方式在线获得:https://github.com/sotif-avlab/sind
translated by 谷歌翻译
以安全为导向的研究思想和应用的开发需要精细的车辆轨迹数据,这些数据不仅具有很高的精度,而且还捕获了大量关键安全事件。本文介绍了Citysim数据集,该数据集的设计核心目的是促进基于安全的研究和应用。 Citysim的车辆轨迹从在12个不同位置录制的1140分钟的无人机视频中提取。它涵盖了各种道路几何形状,包括高速公路基本段,编织段,高速公路合并/偏离段,信号交叉点,停止对照的交叉点以及没有符号/信号控制的交叉点。通过五步操作生成CitySim轨迹,以确保轨迹精度。此外,数据集提供了车辆旋转的边界框信息,该信息被证明可以改善安全评估。与其他基于视频的轨迹数据集相比,CitySim数据集的严重性更高,包括切入,合并和分歧事件,其严重性更高。此外,CitySim通过提供相关资产(如记录位置的3D基本地图和信号时间)来促进对数字双胞胎应用的研究。这些功能为安全研究和应用程序提供了更全面的条件,例如自动驾驶汽车安全和基于位置的安全分析。该数据集可在https://github.com/ozheng1993/ucf-sst-citysim-dataset上在线获得。
translated by 谷歌翻译
In this paper, we propose SceNDD: a scenario-based naturalistic driving dataset that is built upon data collected from an instrumented vehicle in downtown Indianapolis. The data collection was completed in 68 driving sessions with different drivers, where each session lasted about 20--40 minutes. The main goal of creating this dataset is to provide the research community with real driving scenarios that have diverse trajectories and driving behaviors. The dataset contains ego-vehicle's waypoints, velocity, yaw angle, as well as non-ego actor's waypoints, velocity, yaw angle, entry-time, and exit-time. Certain flexibility is provided to users so that actors, sensors, lanes, roads, and obstacles can be added to the existing scenarios. We used a Joint Probabilistic Data Association (JPDA) tracker to detect non-ego vehicles on the road. We present some preliminary results of the proposed dataset and a few applications associated with it. The complete dataset is expected to be released by early 2023.
translated by 谷歌翻译
Figure 1: We introduce datasets for 3D tracking and motion forecasting with rich maps for autonomous driving. Our 3D tracking dataset contains sequences of LiDAR measurements, 360 • RGB video, front-facing stereo (middle-right), and 6-dof localization. All sequences are aligned with maps containing lane center lines (magenta), driveable region (orange), and ground height. Sequences are annotated with 3D cuboid tracks (green). A wider map view is shown in the bottom-right.
translated by 谷歌翻译
多媒体异常数据集在自动监视中发挥着至关重要的作用。它们具有广泛的应用程序,从异常对象/情况检测到检测危及生命事件的检测。该字段正在接收大量的1.5多年的巨大研究兴趣,因此,已经创建了越来越多地专用于异常动作和对象检测的数据集。点击这些公共异常数据集使研究人员能够生成和比较具有相同输入数据的各种异常检测框架。本文介绍了各种视频,音频以及基于异常检测的应用的综合调查。该调查旨在解决基于异常检测的多媒体公共数据集缺乏全面的比较和分析。此外,它可以帮助研究人员选择最佳可用数据集,用于标记框架。此外,我们讨论了现有数据集和未来方向洞察中开发多峰异常检测数据集的差距。
translated by 谷歌翻译
Multi-modal fusion is a basic task of autonomous driving system perception, which has attracted many scholars' interest in recent years. The current multi-modal fusion methods mainly focus on camera data and LiDAR data, but pay little attention to the kinematic information provided by the bottom sensors of the vehicle, such as acceleration, vehicle speed, angle of rotation. These information are not affected by complex external scenes, so it is more robust and reliable. In this paper, we introduce the existing application fields of vehicle bottom information and the research progress of related methods, as well as the multi-modal fusion methods based on bottom information. We also introduced the relevant information of the vehicle bottom information data set in detail to facilitate the research as soon as possible. In addition, new future ideas of multi-modal fusion technology for autonomous driving tasks are proposed to promote the further utilization of vehicle bottom information.
translated by 谷歌翻译
近年来,道路安全引起了智能运输系统领域的研究人员和从业者的重大关注。作为最常见的道路用户群体之一,行人由于其不可预测的行为和运动而导致令人震惊,因为车辆行人互动的微妙误解可以很容易地导致风险的情况或碰撞。现有方法使用预定义的基于碰撞的模型或人类标签方法来估计行人的风险。这些方法通常受到他们的概括能力差,缺乏对自我车辆和行人之间的相互作用的限制。这项工作通过提出行人风险级预测系统来解决所列问题。该系统由三个模块组成。首先,收集车辆角度的行人数据。由于数据包含关于自我车辆和行人的运动的信息,因此可以简化以交互感知方式预测时空特征的预测。使用长短短期存储器模型,行人轨迹预测模块预测后续五个框架中的时空特征。随着预测的轨迹遵循某些交互和风险模式,采用混合聚类和分类方法来探讨时空特征中的风险模式,并使用学习模式训练风险等级分类器。在预测行人的时空特征并识别相应的风险水平时,确定自我车辆和行人之间的风险模式。实验结果验证了PRLP系统的能力,以预测行人的风险程度,从而支持智能车辆的碰撞风险评估,并为车辆和行人提供安全警告。
translated by 谷歌翻译
交叉点是自主行驶中最复杂和事故的城市场景之一,其中制造安全和计算有效的决策是非微不足道的。目前的研究主要关注简化的交通状况,同时忽略了混合交通流量的存在,即车辆,骑自行车者和行人。对于城市道路而言,不同的参与者导致了一个非常动态和复杂的互动,从而冒着学习智能政策的困难。本文在集成决策和控制框架中开发动态置换状态表示,以处理与混合业务流的信号化交集。特别地,该表示引入了编码功能和总和运算符,以构建来自环境观察的驱动状态,能够处理不同类型和变体的交通参与者。构建了受约束的最佳控制问题,其中目标涉及跟踪性能,并且不同参与者和信号灯的约束分别设计以确保安全性。我们通过离线优化编码函数,值函数和策略函数来解决这个问题,其中编码函数给出合理的状态表示,然后用作策略和值函数的输入。禁止策略培训旨在重用从驾驶环境中的观察,并且使用时间通过时间来利用策略函数和编码功能联合。验证结果表明,动态置换状态表示可以增强IDC的驱动性能,包括具有大边距的舒适性,决策合规性和安全性。训练有素的驾驶政策可以实现复杂交叉口的高效和平滑通过,同时保证驾驶智能和安全性。
translated by 谷歌翻译
We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
我们介绍了\ textit {nocturne},这是一种新的2D驾驶模拟器,用于调查部分可观察性下的多代理协调。夜曲的重点是在不具有计算机视觉的计算开销并从图像中提取特征的情况下,在现实世界中的推理和心理理论方面进行研究。该模拟器中的代理只会观察到场景的障碍,模仿人类的视觉传感限制。 Unlike existing benchmarks that are bottlenecked by rendering human-like observations directly using a camera input, Nocturne uses efficient intersection methods to compute a vectorized set of visible features in a C++ back-end, allowing the simulator to run at $2000+$ steps-per -第二。使用开源轨迹和映射数据,我们构建了一个模拟器,以加载和重播来自现实世界驾驶数据的任意轨迹和场景。使用这种环境,我们基准了加强学习和模仿学习剂,并证明这些代理远离人类水平的协调能力,并显着偏离专家轨迹。
translated by 谷歌翻译
在未来几十年中,自动驾驶将普遍存在。闲置在交叉点上提高自动驾驶的安全性,并通过改善交叉点的交通吞吐量来提高效率。在闲置时,路边基础设施通过卸载从车辆到路边基础设施的知觉和计划,在交叉路口远程驾驶自动驾驶汽车。为了实现这一目标,iDriving必须能够以全帧速率以较少100毫秒的尾声处理大量的传感器数据,而无需牺牲准确性。我们描述了算法和优化,使其能够使用准确且轻巧的感知组件实现此目标,该组件是从重叠传感器中得出的复合视图的原因,以及一个共同计划多个车辆的轨迹的计划者。在我们的评估中,闲置始终确保车辆的安全通过,而自动驾驶只能有27%的时间。与其他方法相比,闲置的等待时间还要低5倍,因为它可以实现无流量的交叉点。
translated by 谷歌翻译
通常根据历史崩溃数据来实践道路的风险评估。有时缺少有关驾驶员行为和实时交通情况的信息。在本文中,安全的路线映射(SRM)模型是一种开发道路动态风险热图的方法,可扩展在做出预测时考虑驾驶员行为。 Android应用程序旨在收集驱动程序的信息并将其上传到服务器。在服务器上,面部识别提取了驱动程序的数据,例如面部地标,凝视方向和情绪。检测到驾驶员的嗜睡和分心,并评估驾驶性能。同时,动态的流量信息由路边摄像头捕获并上传到同一服务器。采用基于纵向扫描的动脉交通视频分析来识别视频中的车辆以建立速度和轨迹概况。基于这些数据,引入了LightGBM模型,以预测接下来一两秒钟的驾驶员的冲突指数。然后,使用模糊逻辑模型合并了多个数据源,包括历史崩溃计数和预测的交通冲突指标,以计算道路细分的风险评分。使用从实际的交通交叉点和驾驶模拟平台收集的数据来说明所提出的SRM模型。预测结果表明该模型是准确的,并且增加的驱动程序行为功能将改善模型的性能。最后,为可视化目的而生成风险热图。当局可以使用动态热图来指定安全的走廊,并调度执法部门以及驱动程序,以预警和行程计划。
translated by 谷歌翻译
自主车辆的环境感知受其物理传感器范围和算法性能的限制,以及通过降低其对正在进行的交通状况的理解的闭塞。这不仅构成了对安全和限制驾驶速度的重大威胁,而且它也可能导致不方便的动作。智能基础设施系统可以帮助缓解这些问题。智能基础设施系统可以通过在当前交通情况的数字模型的形式提供关于其周围环境的额外详细信息,填补了车辆的感知中的差距并扩展了其视野。数字双胞胎。然而,这种系统的详细描述和工作原型表明其可行性稀缺。在本文中,我们提出了一种硬件和软件架构,可实现这样一个可靠的智能基础架构系统。我们在现实世界中实施了该系统,并展示了它能够创建一个准确的延伸高速公路延伸的数字双胞胎,从而提高了自主车辆超越其车载传感器的极限的感知。此外,我们通过使用空中图像和地球观测方法来评估数字双胞胎的准确性和可靠性,用于产生地面真理数据。
translated by 谷歌翻译
在过去几年中,自动驾驶一直是最受欢迎,最具挑战性的主题之一。在实现完全自治的道路上,研究人员使用了各种传感器,例如LIDAR,相机,惯性测量单元(IMU)和GPS,并开发了用于自动驾驶应用程序的智能算法,例如对象检测,对象段,障碍,避免障碍物,避免障碍物和障碍物,以及路径计划。近年来,高清(HD)地图引起了很多关注。由于本地化中高清图的精度和信息水平很高,因此它立即成为自动驾驶的关键组成部分之一。从Baidu Apollo,Nvidia和TomTom等大型组织到个别研究人员,研究人员创建了用于自主驾驶的不同场景和用途的高清地图。有必要查看高清图生成的最新方法。本文回顾了最新的高清图生成技术,这些技术利用了2D和3D地图生成。这篇评论介绍了高清图的概念及其在自主驾驶中的有用性,并详细概述了高清地图生成技术。我们还将讨论当前高清图生成技术的局限性,以激发未来的研究。
translated by 谷歌翻译
在这项工作中,我们提出了世界上第一个基于闭环ML的自动驾驶计划基准。虽然存在基于ML的ML的越来越多的ML的议员,但缺乏已建立的数据集和指标限制了该领域的进展。自主车辆运动预测的现有基准专注于短期运动预测,而不是长期规划。这导致了以前的作品来使用基于L2的度量标准的开放循环评估,这不适合公平地评估长期规划。我们的基准通过引入大规模驾驶数据集,轻量级闭环模拟器和特定于运动规划的指标来克服这些限制。我们提供高质量的数据集,在美国和亚洲的4个城市提供1500h的人类驾驶数据,具有广泛不同的交通模式(波士顿,匹兹堡,拉斯维加斯和新加坡)。我们将提供具有无功代理的闭环仿真框架,并提供一系列一般和方案特定的规划指标。我们计划在Neurips 2021上发布数据集,并在2022年初开始组织基准挑战。
translated by 谷歌翻译
模拟在有效评估自动驾驶汽车方面发挥了重要作用。现有方法主要依赖于基于启发式的模拟,在该模拟中,交通参与者遵循某些无法产生复杂人类行为的人类编码的规则。因此,提出了反应性仿真概念,以通过利用现实世界数据来弥合模拟和现实世界交通情况之间的人类行为差距。但是,这些反应性模型可以在模拟几个步骤后轻松地产生不合理的行为,我们将模型视为失去其稳定性。据我们所知,没有任何工作明确讨论并分析了反应性仿真框架的稳定性。在本文中,我们旨在对反应性模拟进行彻底的稳定性分析,并提出一种增强稳定性的解决方案。具体而言,我们首先提出了一个新的反应模拟框架,在其中我们发现模拟状态序列的平滑度和一致性是稳定性的关键因素。然后,我们将运动学媒介物模型纳入框架中,以提高反应性模拟的闭环稳定性。此外,在本文中提出了一些新颖的指标,以更好地分析模拟性能。
translated by 谷歌翻译
自主驾驶中安全路径规划是由于静态场景元素和不确定的周围代理的相互作用,这是一个复杂的任务。虽然所有静态场景元素都是信息来源,但对自助车辆可用的信息有不对称的重要性。我们展示了一个具有新颖功能的数据集,签署了Parience,定义为指示符号是否明显地对自助式车辆的目标有关交通规则的目标。在裁剪标志上使用卷积网络,通过道路类型,图像坐标和计划机动的实验增强,我们预测了76%的准确性,使用76%的符号蓬勃发展,并使用与标志图像的车辆机动信息找到最佳改进。
translated by 谷歌翻译
安全驾驶需要人类和智能代理的多种功能,例如无法看到环境的普遍性,对周围交通的安全意识以及复杂的多代理设置中的决策。尽管强化学习取得了巨大的成功(RL),但由于缺乏集成的环境,大多数RL研究工作分别研究了每个能力。在这项工作中,我们开发了一个名为MetAdrive的新驾驶模拟平台,以支持对机器自治的可概括增强学习算法的研究。 Metadrive具有高度的组成性,可以从程序生成和实际数据导入的实际数据中产生无限数量的不同驾驶场景。基于Metadrive,我们在单一代理和多代理设置中构建了各种RL任务和基线,包括在看不见的场景,安全探索和学习多机构流量的情况下进行基准标记。对程序生成的场景和现实世界情景进行的概括实验表明,增加训练集的多样性和大小会导致RL代理的推广性提高。我们进一步评估了元数据环境中各种安全的增强学习和多代理增强学习算法,并提供基准。源代码,文档和演示视频可在\ url {https://metadriverse.github.io/metadrive}上获得。
translated by 谷歌翻译
We introduce CARLA, an open-source simulator for autonomous driving research. CARLA has been developed from the ground up to support development, training, and validation of autonomous urban driving systems. In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose and can be used freely. The simulation platform supports flexible specification of sensor suites and environmental conditions. We use CARLA to study the performance of three approaches to autonomous driving: a classic modular pipeline, an endto-end model trained via imitation learning, and an end-to-end model trained via reinforcement learning. The approaches are evaluated in controlled scenarios of increasing difficulty, and their performance is examined via metrics provided by CARLA, illustrating the platform's utility for autonomous driving research.
translated by 谷歌翻译