在这项工作中,我们提出了世界上第一个基于闭环ML的自动驾驶计划基准。虽然存在基于ML的ML的越来越多的ML的议员,但缺乏已建立的数据集和指标限制了该领域的进展。自主车辆运动预测的现有基准专注于短期运动预测,而不是长期规划。这导致了以前的作品来使用基于L2的度量标准的开放循环评估,这不适合公平地评估长期规划。我们的基准通过引入大规模驾驶数据集,轻量级闭环模拟器和特定于运动规划的指标来克服这些限制。我们提供高质量的数据集,在美国和亚洲的4个城市提供1500h的人类驾驶数据,具有广泛不同的交通模式(波士顿,匹兹堡,拉斯维加斯和新加坡)。我们将提供具有无功代理的闭环仿真框架,并提供一系列一般和方案特定的规划指标。我们计划在Neurips 2021上发布数据集,并在2022年初开始组织基准挑战。
translated by 谷歌翻译
在本文中,我们提出了一个系统,以培训不仅从自我车辆收集的经验,而且还观察到的所有车辆的经验。该系统使用其他代理的行为来创建更多样化的驾驶场景,而无需收集其他数据。从其他车辆学习的主要困难是没有传感器信息。我们使用一组监督任务来学习一个中间表示,这是对控制车辆的观点不变的。这不仅在训练时间提供了更丰富的信号,而且还可以在推断过程中进行更复杂的推理。了解所有车辆驾驶如何有助于预测测试时的行为,并避免碰撞。我们在闭环驾驶模拟中评估该系统。我们的系统的表现优于公共卡拉排行榜上的所有先前方法,较大的利润率将驾驶得分提高了25,路线完成率提高了24分。我们的方法赢得了2021年的卡拉自动驾驶挑战。代码和数据可在https://github.com/dotchen/lav上获得。
translated by 谷歌翻译
相应地预测周围交通参与者的未来状态,并计划安全,平稳且符合社会的轨迹对于自动驾驶汽车至关重要。当前的自主驾驶系统有两个主要问题:预测模块通常与计划模块解耦,并且计划的成本功能很难指定和调整。为了解决这些问题,我们提出了一个端到端的可区分框架,该框架集成了预测和计划模块,并能够从数据中学习成本函数。具体而言,我们采用可区分的非线性优化器作为运动计划者,该运动计划将神经网络给出的周围剂的预测轨迹作为输入,并优化了自动驾驶汽车的轨迹,从而使框架中的所有操作都可以在框架中具有可观的成本,包括成本功能权重。提出的框架经过大规模的现实驾驶数据集进行了训练,以模仿整个驾驶场景中的人类驾驶轨迹,并在开环和闭环界面中进行了验证。开环测试结果表明,所提出的方法的表现优于各种指标的基线方法,并提供以计划为中心的预测结果,从而使计划模块能够输出接近人类的轨迹。在闭环测试中,提出的方法表明能够处理复杂的城市驾驶场景和鲁棒性,以抵抗模仿学习方法所遭受的分配转移。重要的是,我们发现计划和预测模块的联合培训比在开环和闭环测试中使用单独的训练有素的预测模块进行计划要比计划更好。此外,消融研究表明,框架中的可学习组件对于确保计划稳定性和性能至关重要。
translated by 谷歌翻译
Autonomous vehicle (AV) stacks are typically built in a modular fashion, with explicit components performing detection, tracking, prediction, planning, control, etc. While modularity improves reusability, interpretability, and generalizability, it also suffers from compounding errors, information bottlenecks, and integration challenges. To overcome these challenges, a prominent approach is to convert the AV stack into an end-to-end neural network and train it with data. While such approaches have achieved impressive results, they typically lack interpretability and reusability, and they eschew principled analytical components, such as planning and control, in favor of deep neural networks. To enable the joint optimization of AV stacks while retaining modularity, we present DiffStack, a differentiable and modular stack for prediction, planning, and control. Crucially, our model-based planning and control algorithms leverage recent advancements in differentiable optimization to produce gradients, enabling optimization of upstream components, such as prediction, via backpropagation through planning and control. Our results on the nuScenes dataset indicate that end-to-end training with DiffStack yields substantial improvements in open-loop and closed-loop planning metrics by, e.g., learning to make fewer prediction errors that would affect planning. Beyond these immediate benefits, DiffStack opens up new opportunities for fully data-driven yet modular and interpretable AV architectures. Project website: https://sites.google.com/view/diffstack
translated by 谷歌翻译
仿真是对机器人系统(例如自动驾驶汽车)进行扩展验证和验证的关键。尽管高保真物理和传感器模拟取得了进步,但在模拟道路使用者的现实行为方面仍然存在一个危险的差距。这是因为,与模拟物理和图形不同,设计人类行为的第一个原理模型通常是不可行的。在这项工作中,我们采用了一种数据驱动的方法,并提出了一种可以学会从现实世界驱动日志中产生流量行为的方法。该方法通过将交通仿真问题分解为高级意图推理和低级驾驶行为模仿,通过利用驾驶行为的双层层次结构来实现高样本效率和行为多样性。该方法还结合了一个计划模块,以获得稳定的长马行为。我们从经验上验证了我们的方法,即交通模拟(位)的双层模仿,并具有来自两个大规模驾驶数据集的场景,并表明位表明,在现实主义,多样性和长途稳定性方面可以达到平衡的交通模拟性能。我们还探索了评估行为现实主义的方法,并引入了一套评估指标以进行交通模拟。最后,作为我们的核心贡献的一部分,我们开发和开源一个软件工具,该工具将跨不同驱动数据集的数据格式统一,并将现有数据集将场景转换为交互式仿真环境。有关其他信息和视频,请参见https://sites.google.com/view/nvr-bits2022/home
translated by 谷歌翻译
由于安全问题,自动驾驶汽车的大规模部署已不断延迟。一方面,全面的场景理解是必不可少的,缺乏这种理解会导致易受罕见但复杂的交通状况,例如突然出现未知物体。但是,从全球环境中的推理需要访问多种类型的传感器以及多模式传感器信号的足够融合,这很难实现。另一方面,学习模型中缺乏可解释性也会因无法验证的故障原因阻碍安全性。在本文中,我们提出了一个安全增强的自主驾驶框架,称为可解释的传感器融合变压器(Interfuser),以完全处理和融合来自多模式多视图传感器的信息,以实现全面的场景理解和对抗性事件检测。此外,我们的框架是从我们的框架中生成的中间解释功能,该功能提供了更多的语义,并被利用以更好地约束操作以在安全集内。我们在Carla基准测试中进行了广泛的实验,我们的模型优于先前的方法,在公共卡拉排行榜上排名第一。
translated by 谷歌翻译
我们介绍了\ textit {nocturne},这是一种新的2D驾驶模拟器,用于调查部分可观察性下的多代理协调。夜曲的重点是在不具有计算机视觉的计算开销并从图像中提取特征的情况下,在现实世界中的推理和心理理论方面进行研究。该模拟器中的代理只会观察到场景的障碍,模仿人类的视觉传感限制。 Unlike existing benchmarks that are bottlenecked by rendering human-like observations directly using a camera input, Nocturne uses efficient intersection methods to compute a vectorized set of visible features in a C++ back-end, allowing the simulator to run at $2000+$ steps-per -第二。使用开源轨迹和映射数据,我们构建了一个模拟器,以加载和重播来自现实世界驾驶数据的任意轨迹和场景。使用这种环境,我们基准了加强学习和模仿学习剂,并证明这些代理远离人类水平的协调能力,并显着偏离专家轨迹。
translated by 谷歌翻译
The goal of autonomous vehicles is to navigate public roads safely and comfortably. To enforce safety, traditional planning approaches rely on handcrafted rules to generate trajectories. Machine learning-based systems, on the other hand, scale with data and are able to learn more complex behaviors. However, they often ignore that agents and self-driving vehicle trajectory distributions can be leveraged to improve safety. In this paper, we propose modeling a distribution over multiple future trajectories for both the self-driving vehicle and other road agents, using a unified neural network architecture for prediction and planning. During inference, we select the planning trajectory that minimizes a cost taking into account safety and the predicted probabilities. Our approach does not depend on any rule-based planners for trajectory generation or optimization, improves with more training data and is simple to implement. We extensively evaluate our method through a realistic simulator and show that the predicted trajectory distribution corresponds to different driving profiles. We also successfully deploy it on a self-driving vehicle on urban public roads, confirming that it drives safely without compromising comfort. The code for training and testing our model on a public prediction dataset and the video of the road test are available at https://woven.mobi/safepathnet
translated by 谷歌翻译
We introduce CARLA, an open-source simulator for autonomous driving research. CARLA has been developed from the ground up to support development, training, and validation of autonomous urban driving systems. In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose and can be used freely. The simulation platform supports flexible specification of sensor suites and environmental conditions. We use CARLA to study the performance of three approaches to autonomous driving: a classic modular pipeline, an endto-end model trained via imitation learning, and an end-to-end model trained via reinforcement learning. The approaches are evaluated in controlled scenarios of increasing difficulty, and their performance is examined via metrics provided by CARLA, illustrating the platform's utility for autonomous driving research.
translated by 谷歌翻译
Accurately predicting interactive road agents' future trajectories and planning a socially compliant and human-like trajectory accordingly are important for autonomous vehicles. In this paper, we propose a planning-centric prediction neural network, which takes surrounding agents' historical states and map context information as input, and outputs the joint multi-modal prediction trajectories for surrounding agents, as well as a sequence of control commands for the ego vehicle by imitation learning. An agent-agent interaction module along the time axis is proposed in our network architecture to better comprehend the relationship among all the other intelligent agents on the road. To incorporate the map's topological information, a Dynamic Graph Convolutional Neural Network (DGCNN) is employed to process the road network topology. Besides, the whole architecture can serve as a backbone for the Differentiable Integrated motion Prediction with Planning (DIPP) method by providing accurate prediction results and initial planning commands. Experiments are conducted on real-world datasets to demonstrate the improvements made by our proposed method in both planning and prediction accuracy compared to the previous state-of-the-art methods.
translated by 谷歌翻译
Figure 1: We introduce datasets for 3D tracking and motion forecasting with rich maps for autonomous driving. Our 3D tracking dataset contains sequences of LiDAR measurements, 360 • RGB video, front-facing stereo (middle-right), and 6-dof localization. All sequences are aligned with maps containing lane center lines (magenta), driveable region (orange), and ground height. Sequences are annotated with 3D cuboid tracks (green). A wider map view is shown in the bottom-right.
translated by 谷歌翻译
实现安全和强大的自主权是通往更广泛采用自动驾驶汽车技术的道路的关键瓶颈。这激发了超越外在指标,例如脱离接触之间的里程,并呼吁通过设计体现安全的方法。在本文中,我们解决了这一挑战的某些方面,重点是运动计划和预测问题。我们通过描述在自动驾驶堆栈中解决选定的子问题所采取的新方法的描述,在介绍五个之内采用的设计理念的过程中。这包括安全的设计计划,可解释以及可验证的预测以及对感知错误的建模,以在现实自主系统的测试管道中实现有效的SIM到现实和真实的SIM转移。
translated by 谷歌翻译
We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
translated by 谷歌翻译
受到人类使用多种感觉器官感知世界的事实的启发,具有不同方式的传感器在端到端驾驶中部署,以获得3D场景的全球环境。在以前的作品中,相机和激光镜的输入通过变压器融合,以更好地驾驶性能。通常将这些输入进一步解释为高级地图信息,以帮助导航任务。然而,从复杂地图输入中提取有用的信息很具有挑战性,因为冗余信息可能会误导代理商并对驾驶性能产生负面影响。我们提出了一种新颖的方法,可以从矢量化高清(HD)地图中有效提取特征,并将其利用在端到端驾驶任务中。此外,我们设计了一个新的专家,以通过考虑多道路规则来进一步增强模型性能。实验结果证明,两种提出的改进都可以使我们的代理人与其他方法相比获得卓越的性能。
translated by 谷歌翻译
Making safe and human-like decisions is an essential capability of autonomous driving systems and learning-based behavior planning is a promising pathway toward this objective. Distinguished from existing learning-based methods that directly output decisions, this work introduces a predictive behavior planning framework that learns to predict and evaluate from human driving data. Concretely, a behavior generation module first produces a diverse set of candidate behaviors in the form of trajectory proposals. Then the proposed conditional motion prediction network is employed to forecast other agents' future trajectories conditioned on each trajectory proposal. Given the candidate plans and associated prediction results, we learn a scoring module to evaluate the plans using maximum entropy inverse reinforcement learning (IRL). We conduct comprehensive experiments to validate the proposed framework on a large-scale real-world urban driving dataset. The results reveal that the conditional prediction model is able to forecast multiple possible future trajectories given a candidate behavior and the prediction results are reactive to different plans. Moreover, the IRL-based scoring module can properly evaluate the trajectory proposals and select close-to-human ones. The proposed framework outperforms other baseline methods in terms of similarity to human driving trajectories. Moreover, we find that the conditional prediction model can improve both prediction and planning performance compared to the non-conditional model, and learning the scoring module is critical to correctly evaluating the candidate plans to align with human drivers.
translated by 谷歌翻译
当前的端到端自动驾驶方法要么基于计划的轨迹运行控制器,要么直接执行控制预测,这已经跨越了两条单独研究的研究线。本文看到了它们彼此的潜在相互利益,主动探讨了这两个发展良好的世界的结合。具体而言,我们的集成方法分别有两个用于轨迹计划和直接控制的分支。轨迹分支可以预测未来的轨迹,而控制分支则涉及一种新颖的多步预测方案,以便可以将当前动作与未来状态之间的关系进行推理。连接了两个分支,因此控制分支在每个时间步骤中从轨迹分支接收相应的指导。然后将来自两个分支的输出融合以实现互补的优势。我们的结果在闭环城市驾驶环境中进行了评估,并使用CARLA模拟器具有挑战性的情况。即使有了单眼相机的输入,建议的方法在官方Carla排行榜上排名第一$,超过了其他具有多个传感器或融合机制的复杂候选人。源代码和数据将在https://github.com/openperceptionx/tcp上公开提供。
translated by 谷歌翻译
许多现有的自动驾驶范式涉及多个任务的多个阶段离散管道。为了更好地预测控制信号并增强用户安全性,希望从联合时空特征学习中受益的端到端方法是可取的。尽管基于激光雷达的输入或隐式设计有一些开创性的作品,但在本文中,我们在可解释的基于视觉的设置中提出了问题。特别是,我们提出了一种空间性特征学习方案,以同时同时进行感知,预测和计划任务的一组更具代表性的特征,称为ST-P3。具体而言,提出了一种以自我为中心的积累技术来保留3D空间中的几何信息,然后才能感知鸟类视图转化。设计了双重途径建模,以考虑将来的预测,以将过去的运动变化考虑到过去。引入了基于时间的精炼单元,以弥补识别基于视觉的计划的元素。据我们所知,我们是第一个系统地研究基于端视力的自主驾驶系统的每个部分。我们在开环Nuscenes数据集和闭环CARLA模拟上对以前的最先进的方法进行基准测试。结果显示了我们方法的有效性。源代码,模型和协议详细信息可在https://github.com/openperceptionx/st-p3上公开获得。
translated by 谷歌翻译
基于神经网络的驾驶规划师在改善自动驾驶的任务绩效方面表现出了巨大的承诺。但是,确保具有基于神经网络的组件的系统的安全性,尤其是在密集且高度交互式的交通环境中,这是至关重要的,但又具有挑战性。在这项工作中,我们为基于神经网络的车道更改提出了一个安全驱动的互动计划框架。为了防止过度保守计划,我们确定周围车辆的驾驶行为并评估其侵略性,然后以互动方式相应地适应了计划的轨迹。如果在预测的最坏情况下,即使存在安全的逃避轨迹,则自我车辆可以继续改变车道;否则,它可以停留在当前的横向位置附近或返回原始车道。我们通过广泛而全面的实验环境以及在自动驾驶汽车公司收集的现实情况下进行了广泛的模拟,定量证明了计划者设计的有效性及其优于基线方法的优势。
translated by 谷歌翻译
安全驾驶需要人类和智能代理的多种功能,例如无法看到环境的普遍性,对周围交通的安全意识以及复杂的多代理设置中的决策。尽管强化学习取得了巨大的成功(RL),但由于缺乏集成的环境,大多数RL研究工作分别研究了每个能力。在这项工作中,我们开发了一个名为MetAdrive的新驾驶模拟平台,以支持对机器自治的可概括增强学习算法的研究。 Metadrive具有高度的组成性,可以从程序生成和实际数据导入的实际数据中产生无限数量的不同驾驶场景。基于Metadrive,我们在单一代理和多代理设置中构建了各种RL任务和基线,包括在看不见的场景,安全探索和学习多机构流量的情况下进行基准标记。对程序生成的场景和现实世界情景进行的概括实验表明,增加训练集的多样性和大小会导致RL代理的推广性提高。我们进一步评估了元数据环境中各种安全的增强学习和多代理增强学习算法,并提供基准。源代码,文档和演示视频可在\ url {https://metadriverse.github.io/metadrive}上获得。
translated by 谷歌翻译
自治车辆的评估和改善规划需要可扩展的长尾交通方案。有用的是,这些情景必须是现实的和挑战性的,但不能安全地开车。在这项工作中,我们介绍努力,一种自动生成具有挑战性的场景的方法,导致给定的计划者产生不良行为,如冲突。为了维护情景合理性,关键的想法是利用基于图形的条件VAE的形式利用学习的交通运动模型。方案生成在该流量模型的潜在空间中制定了优化,通过扰乱初始的真实世界的场景来产生与给定计划者碰撞的轨迹。随后的优化用于找到“解决方案”的场景,确保改进给定的计划者是有用的。进一步的分析基于碰撞类型的群集生成的场景。我们攻击两名策划者并展示争取在这两种情况下成功地产生了现实,具有挑战性的情景。我们另外“关闭循环”并使用这些方案优化基于规则的策划器的超参数。
translated by 谷歌翻译