实现安全和强大的自主权是通往更广泛采用自动驾驶汽车技术的道路的关键瓶颈。这激发了超越外在指标,例如脱离接触之间的里程,并呼吁通过设计体现安全的方法。在本文中,我们解决了这一挑战的某些方面,重点是运动计划和预测问题。我们通过描述在自动驾驶堆栈中解决选定的子问题所采取的新方法的描述,在介绍五个之内采用的设计理念的过程中。这包括安全的设计计划,可解释以及可验证的预测以及对感知错误的建模,以在现实自主系统的测试管道中实现有效的SIM到现实和真实的SIM转移。
translated by 谷歌翻译
可以与其他代理人互动以完成给定任务的自主代理的发展是人工智能和机器学习研究的核心领域。为了实现这一目标,自主代理研究小组开发了用于自主系统控制的新型机器学习算法,特别关注深度强化学习和多代理强化学习。研究问题包括可扩展的协调代理政策和代理间沟通;从有限观察的情况下对其他代理的行为,目标和组成的推理;以及基于内在动机,课程学习,因果推断和代表性学习的样品学习。本文概述了该小组正在进行的研究组合,并讨论了未来方向的开放问题。
translated by 谷歌翻译
自动驾驶在过去十年中取得了重大的研究和发展中的重要里程碑。在道路上的自动车辆部署时,对该领域的兴趣越来越令人兴趣,承诺更安全,更生态的运输系统。随着计算强大的人工智能(AI)技术的兴起,自动车辆可以用高精度感测它们的环境,进行安全的实时决策,并在没有人类干预的情况下更可靠地运行。然而,在现有技术中,人类智能决策通常不可能理解,这种缺陷阻碍了这种技术在社会上可接受。因此,除了制造安全的实时决策之外,自治车辆的AI系统还需要解释如何构建这些决策,以便在许多司法管辖区兼容监管。我们的研究在开发可解释的人工智能(XAI)的自治车辆方法上阐明了全面的光芒。特别是,我们做出以下贡献。首先,我们在最先进的自主车辆行业的解释方面彻底概述了目前的差距。然后,我们显示了该领域的解释和解释接收器的分类。第三,我们为端到端自主驾驶系统的架构提出了一个框架,并证明了Xai在调试和调节这些系统中的作用。最后,作为未来的研究方向,我们提供了XAI自主驾驶方法的实地指南,可以提高运营安全性和透明度,以实现监管机构,制造商和所有参与利益相关者的公共批准。
translated by 谷歌翻译
汽车行业在过去几十年中见证了越来越多的发展程度;从制造手动操作车辆到具有高自动化水平的制造车辆。随着近期人工智能(AI)的发展,汽车公司现在雇用BlackBox AI模型来使车辆能够感知其环境,并使人类少或没有输入的驾驶决策。希望能够在商业规模上部署自治车辆(AV),通过社会接受AV成为至关重要的,并且可能在很大程度上取决于其透明度,可信度和遵守法规的程度。通过为AVS行为的解释提供对这些接受要求的遵守对这些验收要求的评估。因此,解释性被视为AVS的重要要求。 AV应该能够解释他们在他们运作的环境中的“见到”。在本文中,我们对可解释的自动驾驶的现有工作体系进行了全面的调查。首先,我们通过突出显示并强调透明度,问责制和信任的重要性来开放一个解释的动机;并审查与AVS相关的现有法规和标准。其次,我们识别并分类了参与发展,使用和监管的不同利益相关者,并引出了AV的解释要求。第三,我们对以前的工作进行了严格的审查,以解释不同的AV操作(即,感知,本地化,规划,控制和系统管理)。最后,我们确定了相关的挑战并提供建议,例如AV可解释性的概念框架。该调查旨在提供对AVS中解释性感兴趣的研究人员所需的基本知识。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
High-quality traffic flow generation is the core module in building simulators for autonomous driving. However, the majority of available simulators are incapable of replicating traffic patterns that accurately reflect the various features of real-world data while also simulating human-like reactive responses to the tested autopilot driving strategies. Taking one step forward to addressing such a problem, we propose Realistic Interactive TrAffic flow (RITA) as an integrated component of existing driving simulators to provide high-quality traffic flow for the evaluation and optimization of the tested driving strategies. RITA is developed with fidelity, diversity, and controllability in consideration, and consists of two core modules called RITABackend and RITAKit. RITABackend is built to support vehicle-wise control and provide traffic generation models from real-world datasets, while RITAKit is developed with easy-to-use interfaces for controllable traffic generation via RITABackend. We demonstrate RITA's capacity to create diversified and high-fidelity traffic simulations in several highly interactive highway scenarios. The experimental findings demonstrate that our produced RITA traffic flows meet all three design goals, hence enhancing the completeness of driving strategy evaluation. Moreover, we showcase the possibility for further improvement of baseline strategies through online fine-tuning with RITA traffic flows.
translated by 谷歌翻译
The last decade witnessed increasingly rapid progress in self-driving vehicle technology, mainly backed up by advances in the area of deep learning and artificial intelligence. The objective of this paper is to survey the current state-of-the-art on deep learning technologies used in autonomous driving. We start by presenting AI-based self-driving architectures, convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm. These methodologies form a base for the surveyed driving scene perception, path planning, behavior arbitration and motion control algorithms. We investigate both the modular perception-planning-action pipeline, where each module is built using deep learning methods, as well as End2End systems, which directly map sensory information to steering commands. Additionally, we tackle current challenges encountered in designing AI architectures for autonomous driving, such as their safety, training data sources and computational hardware. The comparison presented in this survey helps to gain insight into the strengths and limitations of deep learning and AI approaches for autonomous driving and assist with design choices. 1
translated by 谷歌翻译
目前已在表征包含深层的学习模式进行部署到任何安全关键方案之前系统的错误行为越来越感兴趣。然而,表征此行为,通常需要模型,可以对复杂的现实世界的任务极其耗费计算的大规模测试。例如,任务涉及计算密集型对象检测器作为其组成部分之一。在这项工作中,我们提出了一个方法,使使用简化的低高保真模拟器高效的大规模测试和不执行昂贵的深度学习模型的计算成本。我们的方法依赖于设计测试对应的任务的计算密集型部件的高效替代模型。我们通过培训PIXOR和CenterPoint的激光雷达探测器有效的替代模型,同时证明了模拟的精度保持评估在卡拉模拟器减少计算费用的自动驾驶任务的表现证明了我们方法的有效性。
translated by 谷歌翻译
在这项工作中,我们提出了世界上第一个基于闭环ML的自动驾驶计划基准。虽然存在基于ML的ML的越来越多的ML的议员,但缺乏已建立的数据集和指标限制了该领域的进展。自主车辆运动预测的现有基准专注于短期运动预测,而不是长期规划。这导致了以前的作品来使用基于L2的度量标准的开放循环评估,这不适合公平地评估长期规划。我们的基准通过引入大规模驾驶数据集,轻量级闭环模拟器和特定于运动规划的指标来克服这些限制。我们提供高质量的数据集,在美国和亚洲的4个城市提供1500h的人类驾驶数据,具有广泛不同的交通模式(波士顿,匹兹堡,拉斯维加斯和新加坡)。我们将提供具有无功代理的闭环仿真框架,并提供一系列一般和方案特定的规划指标。我们计划在Neurips 2021上发布数据集,并在2022年初开始组织基准挑战。
translated by 谷歌翻译
即将开发我们呼叫所体现的系统的新一代越来越自主和自学习系统。在将这些系统部署到真实上下文中,我们面临各种工程挑战,因为它以有益的方式协调所体现的系统的行为至关重要,确保他们与我们以人为本的社会价值观的兼容性,并且设计可验证安全可靠的人类-Machine互动。我们正在争辩说,引发系统工程将来自嵌入到体现系统的温室,并确保动态联合的可信度,这种情况意识到的情境意识,意图,探索,探险,不断发展,主要是不可预测的,越来越自主的体现系统在不确定,复杂和不可预测的现实世界环境中。我们还识别了许多迫切性的系统挑战,包括可信赖的体现系统,包括强大而人为的AI,认知架构,不确定性量化,值得信赖的自融化以及持续的分析和保证。
translated by 谷歌翻译
相应地预测周围交通参与者的未来状态,并计划安全,平稳且符合社会的轨迹对于自动驾驶汽车至关重要。当前的自主驾驶系统有两个主要问题:预测模块通常与计划模块解耦,并且计划的成本功能很难指定和调整。为了解决这些问题,我们提出了一个端到端的可区分框架,该框架集成了预测和计划模块,并能够从数据中学习成本函数。具体而言,我们采用可区分的非线性优化器作为运动计划者,该运动计划将神经网络给出的周围剂的预测轨迹作为输入,并优化了自动驾驶汽车的轨迹,从而使框架中的所有操作都可以在框架中具有可观的成本,包括成本功能权重。提出的框架经过大规模的现实驾驶数据集进行了训练,以模仿整个驾驶场景中的人类驾驶轨迹,并在开环和闭环界面中进行了验证。开环测试结果表明,所提出的方法的表现优于各种指标的基线方法,并提供以计划为中心的预测结果,从而使计划模块能够输出接近人类的轨迹。在闭环测试中,提出的方法表明能够处理复杂的城市驾驶场景和鲁棒性,以抵抗模仿学习方法所遭受的分配转移。重要的是,我们发现计划和预测模块的联合培训比在开环和闭环测试中使用单独的训练有素的预测模块进行计划要比计划更好。此外,消融研究表明,框架中的可学习组件对于确保计划稳定性和性能至关重要。
translated by 谷歌翻译
自动驾驶汽车是一项不断发展的技术,旨在通过自动操作从车道变更到超车来提高安全性,可访问性,效率和便利性。超车是自动驾驶汽车最具挑战性的操作之一,当前的自动超车技术仅限于简单情况。本文研究了如何通过允许动作流产来提高自主超车的安全性。我们提出了一个基于深层Q网络的决策过程,以确定是否以及何时需要中止超车的操作。拟议的算法在与交通情况不同的模拟中进行了经验评估,这表明所提出的方法可以改善超车手动过程中的安全性。此外,使用自动班车Iseauto在现实世界实验中证明了该方法。
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
这项调查回顾了对基于视觉的自动驾驶系统进行行为克隆训练的解释性方法。解释性的概念具有多个方面,并且需要解释性的驾驶强度是一种安全至关重要的应用。从几个研究领域收集贡献,即计算机视觉,深度学习,自动驾驶,可解释的AI(X-AI),这项调查可以解决几点。首先,它讨论了从自动驾驶系统中获得更多可解释性和解释性的定义,上下文和动机,以及该应用程序特定的挑战。其次,以事后方式为黑盒自动驾驶系统提供解释的方法是全面组织和详细的。第三,详细介绍和讨论了旨在通过设计构建更容易解释的自动驾驶系统的方法。最后,确定并检查了剩余的开放挑战和潜在的未来研究方向。
translated by 谷歌翻译
在本文中,我们提出了一个系统,以培训不仅从自我车辆收集的经验,而且还观察到的所有车辆的经验。该系统使用其他代理的行为来创建更多样化的驾驶场景,而无需收集其他数据。从其他车辆学习的主要困难是没有传感器信息。我们使用一组监督任务来学习一个中间表示,这是对控制车辆的观点不变的。这不仅在训练时间提供了更丰富的信号,而且还可以在推断过程中进行更复杂的推理。了解所有车辆驾驶如何有助于预测测试时的行为,并避免碰撞。我们在闭环驾驶模拟中评估该系统。我们的系统的表现优于公共卡拉排行榜上的所有先前方法,较大的利润率将驾驶得分提高了25,路线完成率提高了24分。我们的方法赢得了2021年的卡拉自动驾驶挑战。代码和数据可在https://github.com/dotchen/lav上获得。
translated by 谷歌翻译
Autonomous vehicle (AV) stacks are typically built in a modular fashion, with explicit components performing detection, tracking, prediction, planning, control, etc. While modularity improves reusability, interpretability, and generalizability, it also suffers from compounding errors, information bottlenecks, and integration challenges. To overcome these challenges, a prominent approach is to convert the AV stack into an end-to-end neural network and train it with data. While such approaches have achieved impressive results, they typically lack interpretability and reusability, and they eschew principled analytical components, such as planning and control, in favor of deep neural networks. To enable the joint optimization of AV stacks while retaining modularity, we present DiffStack, a differentiable and modular stack for prediction, planning, and control. Crucially, our model-based planning and control algorithms leverage recent advancements in differentiable optimization to produce gradients, enabling optimization of upstream components, such as prediction, via backpropagation through planning and control. Our results on the nuScenes dataset indicate that end-to-end training with DiffStack yields substantial improvements in open-loop and closed-loop planning metrics by, e.g., learning to make fewer prediction errors that would affect planning. Beyond these immediate benefits, DiffStack opens up new opportunities for fully data-driven yet modular and interpretable AV architectures. Project website: https://sites.google.com/view/diffstack
translated by 谷歌翻译
随着自主系统成为我们日常生活的一部分,确保其信任度至关重要。有许多用于证明可信赖性的技术。所有这些技术的共同点是需要阐明规格。在本文中,我们对规格进行了广泛的看法,专注于顶级要求,包括但不限于功能,安全性,安全性和其他非功能性属性。本文的主要贡献是对于与指定可信度相关的自主系统社区的一系列高级智力挑战。我们还描述了有关自主系统的许多应用程序域的独特规范挑战。
translated by 谷歌翻译
尽管机器人学课程在高等教育方面已建立,但这些课程通常专注于理论,有时缺乏对开发,部署和将软件应用于真实硬件的技术的系统覆盖。此外,大多数用于机器人教学的硬件平台是针对中学水平的年轻学生的低级玩具。为了解决这一差距,开发了一个自动驾驶汽车硬件平台,称为第1 f1 f1tth,用于教授自动驾驶系统。本文介绍了以“赛车”和替换考试的竞赛为主题的各种教育水平教学模块和软件堆栈。第1辆车提供了一个模块化硬件平台及其相关软件,用于教授自动驾驶算法的基础知识。从基本的反应方法到高级计划算法,教学模块通过使用第1辆车的自动驾驶来增强学生的计算思维。第1辆汽车填补了研究平台和低端玩具车之间的空白,并提供了学习自主系统中主题的动手经验。多年的四所大学为他们的学期本科和研究生课程采用了教学模块。学生反馈用于分析第1个平台的有效性。超过80%的学生强烈同意,硬件平台和模块大大激发了他们的学习,而超过70%的学生强烈同意,硬件增强了他们对学科的理解。调查结果表明,超过80%的学生强烈同意竞争激励他们参加课程。
translated by 谷歌翻译
The goal of autonomous vehicles is to navigate public roads safely and comfortably. To enforce safety, traditional planning approaches rely on handcrafted rules to generate trajectories. Machine learning-based systems, on the other hand, scale with data and are able to learn more complex behaviors. However, they often ignore that agents and self-driving vehicle trajectory distributions can be leveraged to improve safety. In this paper, we propose modeling a distribution over multiple future trajectories for both the self-driving vehicle and other road agents, using a unified neural network architecture for prediction and planning. During inference, we select the planning trajectory that minimizes a cost taking into account safety and the predicted probabilities. Our approach does not depend on any rule-based planners for trajectory generation or optimization, improves with more training data and is simple to implement. We extensively evaluate our method through a realistic simulator and show that the predicted trajectory distribution corresponds to different driving profiles. We also successfully deploy it on a self-driving vehicle on urban public roads, confirming that it drives safely without compromising comfort. The code for training and testing our model on a public prediction dataset and the video of the road test are available at https://woven.mobi/safepathnet
translated by 谷歌翻译
最近,自主驾驶社会上有许多进展,吸引了学术界和工业的很多关注。然而,现有的作品主要专注于汽车,自动驾驶卡车算法和模型仍然需要额外的开发。在本文中,我们介绍了智能自动驾驶卡车系统。我们所呈现的系统由三个主要组成部分组成,1)一个现实的交通仿真模块,用于在测试场景中产生现实的交通流量,2)设计和评估了在现实世界部署中模仿实际卡车响应的高保真卡车模型,3 )具有基于学习的决策算法和多模轨迹策划仪的智能计划模块,考虑到卡车的约束,道路斜率变化和周围的交通流量。我们为每个组分单独提供定量评估,以证明每个部件的保真度和性能。我们还将我们的建议系统部署在真正的卡车上,并进行真实的世界实验,表明我们的系统能力缓解了SIM-TO-REAL差距。我们的代码可以在https://github.com/inceptioresearch/iits提供
translated by 谷歌翻译