尽管机器人学课程在高等教育方面已建立,但这些课程通常专注于理论,有时缺乏对开发,部署和将软件应用于真实硬件的技术的系统覆盖。此外,大多数用于机器人教学的硬件平台是针对中学水平的年轻学生的低级玩具。为了解决这一差距,开发了一个自动驾驶汽车硬件平台,称为第1 f1 f1tth,用于教授自动驾驶系统。本文介绍了以“赛车”和替换考试的竞赛为主题的各种教育水平教学模块和软件堆栈。第1辆车提供了一个模块化硬件平台及其相关软件,用于教授自动驾驶算法的基础知识。从基本的反应方法到高级计划算法,教学模块通过使用第1辆车的自动驾驶来增强学生的计算思维。第1辆汽车填补了研究平台和低端玩具车之间的空白,并提供了学习自主系统中主题的动手经验。多年的四所大学为他们的学期本科和研究生课程采用了教学模块。学生反馈用于分析第1个平台的有效性。超过80%的学生强烈同意,硬件平台和模块大大激发了他们的学习,而超过70%的学生强烈同意,硬件增强了他们对学科的理解。调查结果表明,超过80%的学生强烈同意竞争激励他们参加课程。
translated by 谷歌翻译
The last decade witnessed increasingly rapid progress in self-driving vehicle technology, mainly backed up by advances in the area of deep learning and artificial intelligence. The objective of this paper is to survey the current state-of-the-art on deep learning technologies used in autonomous driving. We start by presenting AI-based self-driving architectures, convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm. These methodologies form a base for the surveyed driving scene perception, path planning, behavior arbitration and motion control algorithms. We investigate both the modular perception-planning-action pipeline, where each module is built using deep learning methods, as well as End2End systems, which directly map sensory information to steering commands. Additionally, we tackle current challenges encountered in designing AI architectures for autonomous driving, such as their safety, training data sources and computational hardware. The comparison presented in this survey helps to gain insight into the strengths and limitations of deep learning and AI approaches for autonomous driving and assist with design choices. 1
translated by 谷歌翻译
Recently, numerous studies have investigated cooperative traffic systems using the communication among vehicle-to-everything (V2X). Unfortunately, when multiple autonomous vehicles are deployed while exposed to communication failure, there might be a conflict of ideal conditions between various autonomous vehicles leading to adversarial situation on the roads. In South Korea, virtual and real-world urban autonomous multi-vehicle races were held in March and November of 2021, respectively. During the competition, multiple vehicles were involved simultaneously, which required maneuvers such as overtaking low-speed vehicles, negotiating intersections, and obeying traffic laws. In this study, we introduce a fully autonomous driving software stack to deploy a competitive driving model, which enabled us to win the urban autonomous multi-vehicle races. We evaluate module-based systems such as navigation, perception, and planning in real and virtual environments. Additionally, an analysis of traffic is performed after collecting multiple vehicle position data over communication to gain additional insight into a multi-agent autonomous driving scenario. Finally, we propose a method for analyzing traffic in order to compare the spatial distribution of multiple autonomous vehicles. We study the similarity distribution between each team's driving log data to determine the impact of competitive autonomous driving on the traffic environment.
translated by 谷歌翻译
本文介绍了Cerberus机器人系统系统,该系统赢得了DARPA Subterranean挑战最终活动。出席机器人自主权。由于其几何复杂性,降解的感知条件以及缺乏GPS支持,严峻的导航条件和拒绝通信,地下设置使自动操作变得特别要求。为了应对这一挑战,我们开发了Cerberus系统,该系统利用了腿部和飞行机器人的协同作用,再加上可靠的控制,尤其是为了克服危险的地形,多模式和多机器人感知,以在传感器退化,以及在传感器退化的条件下进行映射以及映射通过统一的探索路径计划和本地运动计划,反映机器人特定限制的弹性自主权。 Cerberus基于其探索各种地下环境及其高级指挥和控制的能力,表现出有效的探索,对感兴趣的对象的可靠检测以及准确的映射。在本文中,我们报告了DARPA地下挑战赛的初步奔跑和最终奖项的结果,并讨论了为社区带来利益的教训所面临的亮点和挑战。
translated by 谷歌翻译
Prototyping and validating hardware-software components, sub-systems and systems within the intelligent transportation system-of-systems framework requires a modular yet flexible and open-access ecosystem. This work presents our attempt towards developing such a comprehensive research and education ecosystem, called AutoDRIVE, for synergistically prototyping, simulating and deploying cyber-physical solutions pertaining to autonomous driving as well as smart city management. AutoDRIVE features both software as well as hardware-in-the-loop testing interfaces with openly accessible scaled vehicle and infrastructure components. The ecosystem is compatible with a variety of development frameworks, and supports both single and multi-agent paradigms through local as well as distributed computing. Most critically, AutoDRIVE is intended to be modularly expandable to explore emergent technologies, and this work highlights various complementary features and capabilities of the proposed ecosystem by demonstrating four such deployment use-cases: (i) autonomous parking using probabilistic robotics approach for mapping, localization, path planning and control; (ii) behavioral cloning using computer vision and deep imitation learning; (iii) intersection traversal using vehicle-to-vehicle communication and deep reinforcement learning; and (iv) smart city management using vehicle-to-infrastructure communication and internet-of-things.
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
我们描述了一个软件框架和用于串联的硬件平台,用于设计和分析模拟和现实中机器人自主算法。该软件是开源的,独立的容器和操作系统(OS)的软件,具有三个主要组件:COS ++车辆仿真框架(Chrono)的ROS 2接口(Chrono),该框架提供了高保真的轮毂/跟踪的车辆和传感器仿真;基于ROS 2的基本基于算法设计和测试的自治堆栈;以及一个开发生态系统,可在感知,状态估计,路径计划和控制中进行可视化和硬件实验。随附的硬件平台是1/6刻度的车辆,并具有可重新配置的用于计算,传感和跟踪的可重新配置的安装。其目的是允许对算法和传感器配置进行物理测试和改进。由于该车辆平台在模拟环境中具有数字双胞胎,因此可以测试和比较模拟和现实中相同的算法和自主堆栈。该平台的构建是为了表征和管理模拟到现实差距。在此,我们描述了如何建立,部署和用于改善移动应用程序的自主权。
translated by 谷歌翻译
自动驾驶在过去十年中取得了重大的研究和发展中的重要里程碑。在道路上的自动车辆部署时,对该领域的兴趣越来越令人兴趣,承诺更安全,更生态的运输系统。随着计算强大的人工智能(AI)技术的兴起,自动车辆可以用高精度感测它们的环境,进行安全的实时决策,并在没有人类干预的情况下更可靠地运行。然而,在现有技术中,人类智能决策通常不可能理解,这种缺陷阻碍了这种技术在社会上可接受。因此,除了制造安全的实时决策之外,自治车辆的AI系统还需要解释如何构建这些决策,以便在许多司法管辖区兼容监管。我们的研究在开发可解释的人工智能(XAI)的自治车辆方法上阐明了全面的光芒。特别是,我们做出以下贡献。首先,我们在最先进的自主车辆行业的解释方面彻底概述了目前的差距。然后,我们显示了该领域的解释和解释接收器的分类。第三,我们为端到端自主驾驶系统的架构提出了一个框架,并证明了Xai在调试和调节这些系统中的作用。最后,作为未来的研究方向,我们提供了XAI自主驾驶方法的实地指南,可以提高运营安全性和透明度,以实现监管机构,制造商和所有参与利益相关者的公共批准。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
自动驾驶汽车是一项不断发展的技术,旨在通过自动操作从车道变更到超车来提高安全性,可访问性,效率和便利性。超车是自动驾驶汽车最具挑战性的操作之一,当前的自动超车技术仅限于简单情况。本文研究了如何通过允许动作流产来提高自主超车的安全性。我们提出了一个基于深层Q网络的决策过程,以确定是否以及何时需要中止超车的操作。拟议的算法在与交通情况不同的模拟中进行了经验评估,这表明所提出的方法可以改善超车手动过程中的安全性。此外,使用自动班车Iseauto在现实世界实验中证明了该方法。
translated by 谷歌翻译
自治机器人目前是最受欢迎的人工智能问题之一,在过去十年中,从自动驾驶汽车和人形系统到交付机器人和无人机,这是一项最受欢迎的智能问题。部分问题是获得一个机器人,以模仿人类的感知,我们的视觉感,用诸如神经网络等数学模型用相机和大脑的眼睛替换眼睛。开发一个能够在没有人为干预的情况下驾驶汽车的AI和一个小型机器人在城市中递送包裹可能看起来像不同的问题,因此来自感知和视觉的观点来看,这两个问题都有几种相似之处。我们目前的主要解决方案通过使用计算机视觉技术,机器学习和各种算法来实现对环境感知的关注,使机器人理解环境或场景,移动,调整其轨迹并执行其任务(维护,探索,等。)无需人为干预。在这项工作中,我们从头开始开发一个小型自动车辆,能够仅使用视觉信息理解场景,通过工业环境导航,检测人员和障碍,或执行简单的维护任务。我们审查了基本问题的最先进问题,并证明了小规模采用的许多方法类似于来自特斯拉或Lyft等公司的真正自动驾驶汽车中使用的方法。最后,我们讨论了当前的机器人和自主驾驶状态以及我们在这一领域找到的技术和道德限制。
translated by 谷歌翻译
We discuss a platform that has both software and hardware components, and whose purpose is to support research into characterizing and mitigating the sim-to-real gap in robotics and vehicle autonomy engineering. The software is operating-system independent and has three main components: a simulation engine called Chrono, which supports high-fidelity vehicle and sensor simulation; an autonomy stack for algorithm design and testing; and a development environment that supports visualization and hardware-in-the-loop experimentation. The accompanying hardware platform is a 1/6th scale vehicle augmented with reconfigurable mountings for computing, sensing, and tracking. Since this vehicle platform has a digital twin within the simulation environment, one can test the same autonomy perception, state estimation, or controls algorithms, as well as the processors they run on, in both simulation and reality. A demonstration is provided to show the utilization of this platform for autonomy research. Future work will concentrate on augmenting ART/ATK with support for a full-sized Chevy Bolt EUV, which will be made available to this group in the immediate future.
translated by 谷歌翻译
由于Covid-19的大流行,许多大学课程不得不突然转变以实现远程教学。在嵌入式系统和微控制器上调整课程是非常具有挑战性的,因为与真实硬件的互动是它们不可或缺的一部分。我们首先将我们的经验与教学嵌入式系统的四个基本替代方案进行比较:1)在学校与硬件进行交互,2)远程访问硬件,3)向学生借给学生进行家庭工作和4)虚拟化硬件。之后,我们详细评估了我们从传统的离线户外硬件编程课程到使用实验室中存在的真实硬件的快速过渡的经验。事实证明,这种不寻常的远程硬件访问方法是教授嵌入式系统的完全可行的替代方法,从而实现了相对较低的过渡。我们的设置基于现有的解决方案和稳定的开放技术,而无需使用需要高维护的定制应用程序。我们评估了学生和老师的经验,并评估了未来课程的凝结外卖。特定的环境设置可在线获得,作为他人的灵感。
translated by 谷歌翻译
Designing a local planner to control tractor-trailer vehicles in forward and backward maneuvering is a challenging control problem in the research community of autonomous driving systems. Considering a critical situation in the stability of tractor-trailer systems, a practical and novel approach is presented to design a non-linear MPC(NMPC) local planner for tractor-trailer autonomous vehicles in both forward and backward maneuvering. The tractor velocity and steering angle are considered to be control variables. The proposed NMPC local planner is designed to handle jackknife situations, avoiding multiple static obstacles, and path following in both forward and backward maneuvering. The challenges mentioned above are converted into a constrained problem that can be handled simultaneously by the proposed NMPC local planner. The direct multiple shooting approach is used to convert the optimal control problem(OCP) into a non-linear programming problem(NLP) that IPOPT solvers can solve in CasADi. The controller performance is evaluated through different backup and forward maneuvering scenarios in the Gazebo simulation environment in real-time. It achieves asymptotic stability in avoiding static obstacles and accurate tracking performance while respecting path constraints. Finally, the proposed NMPC local planner is integrated with an open-source autonomous driving software stack called AutowareAi.
translated by 谷歌翻译
我们提出了通过现实的模拟和现实世界实验来支持可复制研究的多运动无人机控制(UAV)和估计系统。我们提出了一个独特的多帧本地化范式,用于同时使用多个传感器同时估算各种参考框架中的无人机状态。该系统可以在GNSS和GNSS贬低的环境中进行复杂的任务,包括室外室内过渡和执行冗余估计器,以备份不可靠的本地化源。提出了两种反馈控制设计:一个用于精确和激进的操作,另一个用于稳定和平稳的飞行,并进行嘈杂的状态估计。拟议的控制和估计管道是在3D中使用Euler/Tait-Bryan角度表示的,而无需使用Euler/Tait-Bryan角度表示。取而代之的是,我们依靠旋转矩阵和一个新颖的基于标题的惯例来代表标准多电流直升机3D中的一个自由旋转自由度。我们提供了积极维护且有据可查的开源实现,包括对无人机,传感器和本地化系统的现实模拟。拟议的系统是多年应用系统,空中群,空中操纵,运动计划和遥感的多年研究产物。我们所有的结果都得到了现实世界中的部署的支持,该系统部署将系统塑造成此处介绍的表单。此外,该系统是在我们团队从布拉格的CTU参与期间使用的,该系统在享有声望的MBZIRC 2017和2020 Robotics竞赛中,还参加了DARPA SubT挑战赛。每次,我们的团队都能在世界各地最好的竞争对手中获得最高位置。在每种情况下,挑战都促使团队改善系统,并在紧迫的期限内获得大量高质量的体验。
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
从教育和研究的角度来看,关于硬件的实验是机器人技术和控制的关键方面。在过去的十年中,已经介绍了许多用于车轮机器人的开源硬件和软件框架,主要采用独轮车和类似汽车的机器人的形式,目的是使更广泛的受众访问机器人并支持控制系统开发。独轮车通常很小且便宜,因此有助于在较大的机队中进行实验,但它们不适合高速运动。类似汽车的机器人更敏捷,但通常更大且更昂贵,因此需要更多的空间和金钱资源。为了弥合这一差距,我们介绍了Chronos,这是一种具有定制开源电子设备的新型汽车的1/28比例机器人,以及CRS是用于控制和机器人技术的开源软件框架。 CRS软件框架包括实施各种最新的算法,以进行控制,估计和多机构协调。通过这项工作,我们旨在更轻松地使用硬件,并减少启动新的教育和研究项目所需的工程时间。
translated by 谷歌翻译
汽车行业在过去几十年中见证了越来越多的发展程度;从制造手动操作车辆到具有高自动化水平的制造车辆。随着近期人工智能(AI)的发展,汽车公司现在雇用BlackBox AI模型来使车辆能够感知其环境,并使人类少或没有输入的驾驶决策。希望能够在商业规模上部署自治车辆(AV),通过社会接受AV成为至关重要的,并且可能在很大程度上取决于其透明度,可信度和遵守法规的程度。通过为AVS行为的解释提供对这些接受要求的遵守对这些验收要求的评估。因此,解释性被视为AVS的重要要求。 AV应该能够解释他们在他们运作的环境中的“见到”。在本文中,我们对可解释的自动驾驶的现有工作体系进行了全面的调查。首先,我们通过突出显示并强调透明度,问责制和信任的重要性来开放一个解释的动机;并审查与AVS相关的现有法规和标准。其次,我们识别并分类了参与发展,使用和监管的不同利益相关者,并引出了AV的解释要求。第三,我们对以前的工作进行了严格的审查,以解释不同的AV操作(即,感知,本地化,规划,控制和系统管理)。最后,我们确定了相关的挑战并提供建议,例如AV可解释性的概念框架。该调查旨在提供对AVS中解释性感兴趣的研究人员所需的基本知识。
translated by 谷歌翻译
两栖地面汽车将飞行和驾驶模式融合在一起,以实现更灵活的空中行动能力,并且最近受到了越来越多的关注。通过分析现有的两栖车辆,我们强调了在复杂的三维城市运输系统中有效使用两栖车辆的自动驾驶功能。我们审查并总结了现有两栖车辆设计中智能飞行驾驶的关键促成技术,确定主要的技术障碍,并提出潜在的解决方案,以实现未来的研究和创新。本文旨在作为研究和开发智能两栖车辆的指南,以实现未来的城市运输。
translated by 谷歌翻译
自主车辆的环境感知受其物理传感器范围和算法性能的限制,以及通过降低其对正在进行的交通状况的理解的闭塞。这不仅构成了对安全和限制驾驶速度的重大威胁,而且它也可能导致不方便的动作。智能基础设施系统可以帮助缓解这些问题。智能基础设施系统可以通过在当前交通情况的数字模型的形式提供关于其周围环境的额外详细信息,填补了车辆的感知中的差距并扩展了其视野。数字双胞胎。然而,这种系统的详细描述和工作原型表明其可行性稀缺。在本文中,我们提出了一种硬件和软件架构,可实现这样一个可靠的智能基础架构系统。我们在现实世界中实施了该系统,并展示了它能够创建一个准确的延伸高速公路延伸的数字双胞胎,从而提高了自主车辆超越其车载传感器的极限的感知。此外,我们通过使用空中图像和地球观测方法来评估数字双胞胎的准确性和可靠性,用于产生地面真理数据。
translated by 谷歌翻译