以安全为导向的研究思想和应用的开发需要精细的车辆轨迹数据,这些数据不仅具有很高的精度,而且还捕获了大量关键安全事件。本文介绍了Citysim数据集,该数据集的设计核心目的是促进基于安全的研究和应用。 Citysim的车辆轨迹从在12个不同位置录制的1140分钟的无人机视频中提取。它涵盖了各种道路几何形状,包括高速公路基本段,编织段,高速公路合并/偏离段,信号交叉点,停止对照的交叉点以及没有符号/信号控制的交叉点。通过五步操作生成CitySim轨迹,以确保轨迹精度。此外,数据集提供了车辆旋转的边界框信息,该信息被证明可以改善安全评估。与其他基于视频的轨迹数据集相比,CitySim数据集的严重性更高,包括切入,合并和分歧事件,其严重性更高。此外,CitySim通过提供相关资产(如记录位置的3D基本地图和信号时间)来促进对数字双胞胎应用的研究。这些功能为安全研究和应用程序提供了更全面的条件,例如自动驾驶汽车安全和基于位置的安全分析。该数据集可在https://github.com/ozheng1993/ucf-sst-citysim-dataset上在线获得。
translated by 谷歌翻译
交叉路口是自动驾驶任务最具挑战性的场景之一。由于复杂性和随机性,在相交处的基本应用(例如行为建模,运动预测,安全验证等)在很大程度上取决于数据驱动的技术。因此,交叉点中对流量参与者(TPS)的轨迹数据集的需求很大。目前,城市地区的大多数交叉路口都配备了交通信号灯。但是,尚无用于信号交叉点的大规模,高质量,公开可用的轨迹数据集。因此,在本文中,在中国天津选择了典型的两相信号交叉点。此外,管道旨在构建信号交叉数据集(SIND),其中包含7个小时的记录,其中包括13,000多种TPS,具有7种类型。然后,记录了信德的交通违规行为。此外,也将信德与其他类似作品进行比较。 SIND的特征可以概括如下:1)信德提供了更全面的信息,包括交通信号灯状态,运动参数,高清(HD)地图等。2)TPS的类别是多种多样和特征的,其中比例是脆弱的道路使用者(VRU)最高为62.6%3)显示了多次交通信号灯违反非电动车辆的行为。我们认为,Sind将是对现有数据集的有效补充,可以促进有关自动驾驶的相关研究。该数据集可通过以下方式在线获得:https://github.com/sotif-avlab/sind
translated by 谷歌翻译
自动检测交通事故是交通监控系统中重要的新兴主题。如今,许多城市交叉路口都配备了与交通管理系统相关的监视摄像机。因此,计算机视觉技术可以是自动事故检测的可行工具。本文提出了一个新的高效框架,用于在交通监视应用的交叉点上进行事故检测。所提出的框架由三个层次步骤组成,包括基于最先进的Yolov4方法的有效和准确的对象检测,基于Kalman滤波器与匈牙利算法进行关联的对象跟踪以及通过轨迹冲突分析进行的事故检测。对象关联应用了新的成本函数,以适应对象跟踪步骤中的遮挡,重叠对象和形状变化。为了检测不同类型的轨迹冲突,包括车辆到车辆,车辆对乘车和车辆对自行车,对物体轨迹进行了分析。使用真实交通视频数据的实验结果显示,该方法在交通监视的实时应用中的可行性。尤其是,轨迹冲突,包括在城市十字路口发生的近乎事故和事故,以低的错误警报率和高检测率检测到。使用从YouTube收集的具有不同照明条件的视频序列评估所提出框架的鲁棒性。该数据集可在以下网址公开获取:http://github.com/hadi-ghnd/accidentdetection。
translated by 谷歌翻译
计算机视觉在智能运输系统(ITS)和交通监视中发挥了重要作用。除了快速增长的自动化车辆和拥挤的城市外,通过实施深层神经网络的实施,可以使用视频监视基础架构进行自动和高级交通管理系统(ATM)。在这项研究中,我们为实时交通监控提供了一个实用的平台,包括3D车辆/行人检测,速度检测,轨迹估算,拥塞检测以及监视车辆和行人的相互作用,都使用单个CCTV交通摄像头。我们适应了定制的Yolov5深神经网络模型,用于车辆/行人检测和增强的排序跟踪算法。还开发了基于混合卫星的基于混合卫星的逆透视图(SG-IPM)方法,用于摄像机自动校准,从而导致准确的3D对象检测和可视化。我们还根据短期和长期的时间视频数据流开发了层次结构的交通建模解决方案,以了解脆弱道路使用者的交通流量,瓶颈和危险景点。关于现实世界情景和与最先进的比较的几项实验是使用各种交通监控数据集进行的,包括从高速公路,交叉路口和城市地区收集的MIO-TCD,UA-DETRAC和GRAM-RTM,在不同的照明和城市地区天气状况。
translated by 谷歌翻译
由于精确定位传感器,人工智能(AI)的安全功能,自动驾驶系统,连接的车辆,高通量计算和边缘计算服务器的技术进步,驾驶安全分析最近经历了前所未有的改进。特别是,深度学习(DL)方法授权音量视频处理,从路边单元(RSU)捕获的大型视频中提取与安全相关的功能。安全指标是调查崩溃和几乎冲突事件的常用措施。但是,这些指标提供了对整个网络级流量管理的有限见解。另一方面,一些安全评估工作致力于处理崩溃报告,并确定与道路几何形状,交通量和天气状况相关的崩溃的空间和时间模式。这种方法仅依靠崩溃报告,而忽略了交通视频的丰富信息,这些信息可以帮助确定违规行为在崩溃中的作用。为了弥合这两个观点,我们定义了一组新的网络级安全指标(NSM),以通过处理RSU摄像机拍摄的图像来评估交通流的总体安全性。我们的分析表明,NSM显示出与崩溃率的显着统计关联。这种方法与简单地概括单个崩溃分析的结果不同,因为所有车辆都有助于计算NSM,而不仅仅是碰撞事件所涉及的NSM。该视角将交通流量视为一个复杂的动态系统,其中某些节点的动作可以通过网络传播并影响其他节点的崩溃风险。我们还提供了附录A中的代孕安全指标(SSM)的全面审查。
translated by 谷歌翻译
Recently, e-scooter-involved crashes have increased significantly but little information is available about the behaviors of on-road e-scooter riders. Most existing e-scooter crash research was based on retrospectively descriptive media reports, emergency room patient records, and crash reports. This paper presents a naturalistic driving study with a focus on e-scooter and vehicle encounters. The goal is to quantitatively measure the behaviors of e-scooter riders in different encounters to help facilitate crash scenario modeling, baseline behavior modeling, and the potential future development of in-vehicle mitigation algorithms. The data was collected using an instrumented vehicle and an e-scooter rider wearable system, respectively. A three-step data analysis process is developed. First, semi-automatic data labeling extracts e-scooter rider images and non-rider human images in similar environments to train an e-scooter-rider classifier. Then, a multi-step scene reconstruction pipeline generates vehicle and e-scooter trajectories in all encounters. The final step is to model e-scooter rider behaviors and e-scooter-vehicle encounter scenarios. A total of 500 vehicle to e-scooter interactions are analyzed. The variables pertaining to the same are also discussed in this paper.
translated by 谷歌翻译
随着智能车辆和先进驾驶员援助系统(ADAS)的快速发展,新趋势是人类驾驶员的混合水平将参与运输系统。因此,在这种情况下,司机的必要视觉指导对于防止潜在风险至关重要。为了推进视觉指导系统的发展,我们介绍了一种新的视觉云数据融合方法,从云中集成相机图像和数字双胞胎信息,帮助智能车辆做出更好的决策。绘制目标车辆边界框并在物体检测器的帮助下(在EGO车辆上运行)和位置信息(从云接收)匹配。使用深度图像作为附加特征源获得最佳匹配结果,从工会阈值下面的0.7交叉口下的精度为79.2%。进行了对车道改变预测的案例研究,以表明所提出的数据融合方法的有效性。在案例研究中,提出了一种多层的Perceptron算法,用修改的车道改变预测方法提出。从Unity游戏发动机获得的人型仿真结果表明,在安全性,舒适度和环境可持续性方面,拟议的模型可以显着提高高速公路驾驶性能。
translated by 谷歌翻译
Figure 1: We introduce datasets for 3D tracking and motion forecasting with rich maps for autonomous driving. Our 3D tracking dataset contains sequences of LiDAR measurements, 360 • RGB video, front-facing stereo (middle-right), and 6-dof localization. All sequences are aligned with maps containing lane center lines (magenta), driveable region (orange), and ground height. Sequences are annotated with 3D cuboid tracks (green). A wider map view is shown in the bottom-right.
translated by 谷歌翻译
通常根据历史崩溃数据来实践道路的风险评估。有时缺少有关驾驶员行为和实时交通情况的信息。在本文中,安全的路线映射(SRM)模型是一种开发道路动态风险热图的方法,可扩展在做出预测时考虑驾驶员行为。 Android应用程序旨在收集驱动程序的信息并将其上传到服务器。在服务器上,面部识别提取了驱动程序的数据,例如面部地标,凝视方向和情绪。检测到驾驶员的嗜睡和分心,并评估驾驶性能。同时,动态的流量信息由路边摄像头捕获并上传到同一服务器。采用基于纵向扫描的动脉交通视频分析来识别视频中的车辆以建立速度和轨迹概况。基于这些数据,引入了LightGBM模型,以预测接下来一两秒钟的驾驶员的冲突指数。然后,使用模糊逻辑模型合并了多个数据源,包括历史崩溃计数和预测的交通冲突指标,以计算道路细分的风险评分。使用从实际的交通交叉点和驾驶模拟平台收集的数据来说明所提出的SRM模型。预测结果表明该模型是准确的,并且增加的驱动程序行为功能将改善模型的性能。最后,为可视化目的而生成风险热图。当局可以使用动态热图来指定安全的走廊,并调度执法部门以及驱动程序,以预警和行程计划。
translated by 谷歌翻译
具有自动化和连通性的赋予,连接和自动化的车辆旨在成为合作驾驶自动化的革命性推动者。然而,骑士需要对周围环境的高保真感知信息,但从各种车载传感器以及车辆到所有的通信(v2x)通信中都可以昂贵。因此,通过具有成本效益的平台基于高保真传感器的真实感知信息对于启用与CDA相关的研究(例如合作决策或控制)至关重要。大多数针对CAVS的最先进的交通模拟研究都通过直接呼吁对象的内在属性来依赖情况 - 意识信息,这阻碍了CDA算法评估的可靠性和保真度。在这项研究中,\ textit {网络移动镜(CMM)}共模拟平台设计用于通过提供真实感知信息来启用CDA。 \ textit {cmm}共模拟平台可以通过高保真传感器感知系统和具有实时重建系统的网络世界模仿现实世界。具体而言,现实世界的模拟器主要负责模拟交通环境,传感器以及真实的感知过程。 Mirror-World Simulator负责重建对象,并将其信息作为模拟器的内在属性,以支持CD​​A算法的开发和评估。为了说明拟议的共模拟平台的功能,将基于路边的激光雷达的车辆感知系统原型作为研究案例。特定的流量环境和CDA任务是为实验设计的,其结果得到了证明和分析以显示平台的性能。
translated by 谷歌翻译
在本文中,我们使用两个无监督的学习算法的组合介绍了路边激光雷达物体检测的解决方案。 3D点云数据首先将球形坐标转换成球形坐标并使用散列函数填充到方位角网格矩阵中。之后,RAW LIDAR数据被重新排列成空间 - 时间数据结构,以存储范围,方位角和强度的信息。基于强度信道模式识别,应用动态模式分解方法将点云数据分解成低级背景和稀疏前景。三角算法根据范围信息,自动发现分割值以将移动目标与静态背景分开。在强度和范围背景减法之后,将使用基于密度的检测器检测到前景移动物体,并编码到状态空间模型中以进行跟踪。所提出的模型的输出包括车辆轨迹,可以实现许多移动性和安全应用。该方法针对商业流量数据收集平台进行了验证,并证明了对基础设施激光雷达对象检测的高效可靠的解决方案。与之前的方法相比,该方法直接处理散射和离散点云,所提出的方法可以建立3D测量数据的复杂线性关系较小,这捕获了我们经常需要的空间时间结构。
translated by 谷歌翻译
自主车辆的环境感知受其物理传感器范围和算法性能的限制,以及通过降低其对正在进行的交通状况的理解的闭塞。这不仅构成了对安全和限制驾驶速度的重大威胁,而且它也可能导致不方便的动作。智能基础设施系统可以帮助缓解这些问题。智能基础设施系统可以通过在当前交通情况的数字模型的形式提供关于其周围环境的额外详细信息,填补了车辆的感知中的差距并扩展了其视野。数字双胞胎。然而,这种系统的详细描述和工作原型表明其可行性稀缺。在本文中,我们提出了一种硬件和软件架构,可实现这样一个可靠的智能基础架构系统。我们在现实世界中实施了该系统,并展示了它能够创建一个准确的延伸高速公路延伸的数字双胞胎,从而提高了自主车辆超越其车载传感器的极限的感知。此外,我们通过使用空中图像和地球观测方法来评估数字双胞胎的准确性和可靠性,用于产生地面真理数据。
translated by 谷歌翻译
基于时空的图(STMAP)方法显示出为车辆轨迹重建处理高角度视频的巨大潜力,可以满足各种数据驱动的建模和模仿学习应用的需求。在本文中,我们开发了时空深嵌入(STDE)模型,该模型在像素和实例水平上施加了平等约束,以生成用于STMAP上车辆条纹分割的实例感知嵌入。在像素级别上,每个像素在不同范围的8-邻居像素进行编码,随后使用该编码来指导神经网络学习嵌入机制。在实例级别上,歧视性损耗函数被设计为将属于同一实例的像素更接近,并将不同实例的平均值分开。然后,通过静脉 - 沃特算法算法优化时空亲和力的输出,以获得最终的聚类结果。基于分割指标,我们的模型优于其他五个用于STMAP处理的基线,并在阴影,静态噪声和重叠的影响下显示出稳健性。该设计的模型用于处理所有公共NGSIM US-101视频,以生成完整的车辆轨迹,表明具有良好的可扩展性和适应性。最后但并非最不重要的一点是,讨论了带有STDE和未来方向的扫描线方法的优势。代码,STMAP数据集和视频轨迹在在线存储库中公开可用。 github链接:shorturl.at/jklt0。
translated by 谷歌翻译
Computer vision applications in intelligent transportation systems (ITS) and autonomous driving (AD) have gravitated towards deep neural network architectures in recent years. While performance seems to be improving on benchmark datasets, many real-world challenges are yet to be adequately considered in research. This paper conducted an extensive literature review on the applications of computer vision in ITS and AD, and discusses challenges related to data, models, and complex urban environments. The data challenges are associated with the collection and labeling of training data and its relevance to real world conditions, bias inherent in datasets, the high volume of data needed to be processed, and privacy concerns. Deep learning (DL) models are commonly too complex for real-time processing on embedded hardware, lack explainability and generalizability, and are hard to test in real-world settings. Complex urban traffic environments have irregular lighting and occlusions, and surveillance cameras can be mounted at a variety of angles, gather dirt, shake in the wind, while the traffic conditions are highly heterogeneous, with violation of rules and complex interactions in crowded scenarios. Some representative applications that suffer from these problems are traffic flow estimation, congestion detection, autonomous driving perception, vehicle interaction, and edge computing for practical deployment. The possible ways of dealing with the challenges are also explored while prioritizing practical deployment.
translated by 谷歌翻译
用于流量操作和控制的现有数据收集方法通常依赖于基于基础架构的环路探测器或探测器车辆轨迹。连接和自动化的车辆(CAVS)不仅可以报告有关自己的数据,而且可以提供所有检测到的周围车辆的状态。从多个CAVS以及基础设施传感器(例如Lidar)的感知数据集成,即使在非常低的渗透率下也可以提供更丰富的信息。本文旨在开发合作数据收集系统,该系统集成了来自基础架构和CAVS的LiDar Point Cloud数据,以为各种运输应用创建合作感知环境。最新的3D检测模型用于在合并点云中检测车辆。我们在与Carla和Sumo的共模拟平台中测试了具有最大压力自适应信号控制模型的提出的合作感知环境。结果表明,CAV和基础设施传感器的渗透率非常低,足以实现可比性的性能,而连接车辆(CV)的渗透率为30%或更高。我们还显示了不同CAV渗透率下的等效CV渗透率(E-CVPR),以证明合作感知环境的数据收集效率。
translated by 谷歌翻译
多媒体异常数据集在自动监视中发挥着至关重要的作用。它们具有广泛的应用程序,从异常对象/情况检测到检测危及生命事件的检测。该字段正在接收大量的1.5多年的巨大研究兴趣,因此,已经创建了越来越多地专用于异常动作和对象检测的数据集。点击这些公共异常数据集使研究人员能够生成和比较具有相同输入数据的各种异常检测框架。本文介绍了各种视频,音频以及基于异常检测的应用的综合调查。该调查旨在解决基于异常检测的多媒体公共数据集缺乏全面的比较和分析。此外,它可以帮助研究人员选择最佳可用数据集,用于标记框架。此外,我们讨论了现有数据集和未来方向洞察中开发多峰异常检测数据集的差距。
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
感知环境是实现合作驾驶自动化(CDA)的最基本关键之一,该关键被认为是解决当代运输系统的安全性,流动性和可持续性问题的革命性解决方案。尽管目前在计算机视觉的物体感知领域正在发生前所未有的进化,但由于不可避免的物理遮挡和单辆车的接受程度有限,最先进的感知方法仍在与复杂的现实世界流量环境中挣扎系统。基于多个空间分离的感知节点,合作感知(CP)诞生是为了解锁驱动自动化的感知瓶颈。在本文中,我们全面审查和分析了CP的研究进度,据我们所知,这是第一次提出统一的CP框架。审查了基于不同类型的传感器的CP系统的体系结构和分类学,以显示对CP系统的工作流程和不同结构的高级描述。对节点结构,传感器模式和融合方案进行了审查和分析,并使用全面的文献进行了详细的解释。提出了分层CP框架,然后对现有数据集和模拟器进行审查,以勾勒出CP的整体景观。讨论重点介绍了当前的机会,开放挑战和预期的未来趋势。
translated by 谷歌翻译
The last decade witnessed increasingly rapid progress in self-driving vehicle technology, mainly backed up by advances in the area of deep learning and artificial intelligence. The objective of this paper is to survey the current state-of-the-art on deep learning technologies used in autonomous driving. We start by presenting AI-based self-driving architectures, convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm. These methodologies form a base for the surveyed driving scene perception, path planning, behavior arbitration and motion control algorithms. We investigate both the modular perception-planning-action pipeline, where each module is built using deep learning methods, as well as End2End systems, which directly map sensory information to steering commands. Additionally, we tackle current challenges encountered in designing AI architectures for autonomous driving, such as their safety, training data sources and computational hardware. The comparison presented in this survey helps to gain insight into the strengths and limitations of deep learning and AI approaches for autonomous driving and assist with design choices. 1
translated by 谷歌翻译
自动检测飞行无人机是一个关键问题,其存在(特别是未经授权)可以造成风险的情况或损害安全性。在这里,我们设计和评估了多传感器无人机检测系统。结合常见的摄像机和麦克风传感器,我们探索了热红外摄像机的使用,指出是一种可行且有希望的解决方案,在相关文献中几乎没有解决。我们的解决方案还集成了鱼眼相机,以监视天空的更大部分,并将其他摄像机转向感兴趣的对象。传感溶液与ADS-B接收器,GPS接收器和雷达模块相辅相成,尽管由于其有限的检测范围,后者未包含在我们的最终部署中。即使此处使用的摄像机的分辨率较低,热摄像机也被证明是与摄像机一样好的可行解决方案。我们作品的另外两个新颖性是创建一个新的公共数据集的多传感器注释数据,该数据与现有的类别相比扩大了类的数量,以及对探测器性能的研究作为传感器到传感器的函数的研究目标距离。还探索了传感器融合,表明可以以这种方式使系统更强大,从而减轻对单个传感器的虚假检测
translated by 谷歌翻译