成对学习是指损失函数取决于一对情况的学习任务。它实例化了许多重要的机器学习任务,如双级排名和度量学习。一种流行的方法来处理成对学习中的流数据是在线梯度下降(OGD)算法,其中需要将当前实例配对以前具有足够大的尺寸的先前实例的电流实例,因此遭受可扩展性问题。在本文中,我们提出了用于成对学习的简单随机和在线梯度下降方法。与现有研究的显着差异是,我们仅将当前实例与前一个构建梯度方向配对,这在存储和计算复杂性中是有效的。我们为凸和非凸起的展示结果,优化和泛化误差界以及平滑和非光滑问题都开发了新颖的稳定性结果,优化和泛化误差界限。我们引入了新颖的技术来解耦模型的依赖性和前一个例子在优化和泛化分析中。我们的研究解决了使用具有非常小的固定尺寸的缓冲集开发OGD的有意义的泛化范围的开放问题。我们还扩展了我们的算法和稳定性分析,以便为成对学习开发差异私有的SGD算法,这显着提高了现有结果。
translated by 谷歌翻译
在本文中,通过引入低噪声条件,我们研究了在随机凸出优化(SCO)的环境中,差异私有随机梯度下降(SGD)算法的隐私和效用(概括)表现。对于点心学习,我们建立了订单$ \ Mathcal {o} \ big(\ frac {\ sqrt {\ sqrt {d \ log(1/\ delta)}} {n \ epsilon} \ big)和$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \ \ \ \\ \ \ \ \ \ big(\ frac {\ frac {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt { Mathcal {o} \ big({n^{ - \ frac {1+ \ alpha} {2}}}}}}+\ frac {\ sqrt {d \ log(1/\ delta)}}} )$(\ epsilon,\ delta)$ - 差异化私有SGD算法,分别是较高的和$ \ alpha $ -h \'分别较旧的光滑损失,其中$ n $是样本尺寸,$ d $是维度。对于成对学习,受\ cite {lei2020sharper,lei2021Generalization}的启发,我们提出了一种基于梯度扰动的简单私人SGD算法,该算法满足$(\ epsilon,\ delta)$ - 差异性限制,并开发出了新颖的私密性,并且算法。特别是,我们证明我们的算法可以实现多余的风险利率$ \ MATHCAL {o} \ big(\ frac {1} {\ sqrt {n}}}+\ frac {\ frac {\ sqrt { delta)}}} {n \ epsilon} \ big)$带有梯度复杂性$ \ mathcal {o}(n)$和$ \ mathcal {o} \ big(n^{\ frac {\ frac {2- \ alpha} {1+ alpha} {1+ \ alpha}}}+n \ big)$,用于强烈平滑和$ \ alpha $ -h \'olde R平滑损失。此外,在低噪声环境中建立了更快的学习率,以实现平滑和非平滑损失。据我们所知,这是第一次实用分析,它提供了超过$ \ Mathcal {o} \ big(\ frac {1} {\ sqrt {\ sqrt {n}}+\ frac {\ sqrt {d sqrt {d \ sqrt {d \ sqrt { log(1/\ delta)}}} {n \ epsilon} \ big)$用于隐私提供成对学习。
translated by 谷歌翻译
最近,有大量的工作致力于研究马尔可夫链随机梯度方法(MC-SGMS),这些方法主要集中于他们解决最小化问题的收敛分析。在本文中,我们通过统计学习理论框架中的算法稳定性镜头对MC-SGM进行了全面的MC-SGMS分析。对于经验风险最小化(ERM)问题,我们通过引入实用的论点稳定性来建立平稳和非平滑案例的最佳人口风险界限。对于最小值问题,我们建立了在平均参数稳定性和概括误差之间的定量连接,该误差扩展了均匀稳定性\ cite {lei2021Staritibal}的现有结果。我们进一步开发了预期和高概率的凸孔问题问题的第一个几乎最佳的收敛速率,这与我们的稳定性结果相结合,表明可以在平滑和非平滑案例中达到最佳的概括界限。据我们所知,这是对梯度从马尔可夫过程采样时对SGM的首次概括分析。
translated by 谷歌翻译
随机优化在最小化机器学习中的目标功能方面发现了广泛的应用,这激发了许多理论研究以了解其实际成功。大多数现有研究都集中在优化误差的收敛上,而随机优化的概括分析却落后了。在实践中经常遇到的非洞穴和非平滑问题的情况尤其如此。在本文中,我们初始化了对非凸和非平滑问题的随机优化的系统稳定性和概括分析。我们介绍了新型算法稳定性措施,并在人口梯度和经验梯度之间建立了定量联系,然后进一步扩展,以研究经验风险的莫罗(Moreau)膜之间的差距和人口风险的差距。据我们所知,尚未在文献中研究稳定性与概括之间的这些定量联系。我们引入了一类采样确定的算法,为此我们为三种稳定性度量而开发界限。最后,我们将这些讨论应用于随机梯度下降及其自适应变体的误差界限,我们在其中显示如何通过调整步骤大小和迭代次数来实现隐式正则化。
translated by 谷歌翻译
随机梯度下降(SGDA)及其变体一直是解决最小值问题的主力。但是,与研究有差异隐私(DP)约束的经过良好研究的随机梯度下降(SGD)相反,在理解具有DP约束的SGDA的概括(实用程序)方面几乎没有工作。在本文中,我们使用算法稳定性方法在不同的设置中建立DP-SGDA的概括(实用程序)。特别是,对于凸 - 凸环设置,我们证明DP-SGDA可以在平滑和非平滑案例中都可以根据弱原始二元人群风险获得最佳的效用率。据我们所知,这是在非平滑案例中DP-SGDA的第一个已知结果。我们进一步在非convex-rong-concave环境中提供了实用性分析,这是原始人口风险的首个已知结果。即使在非私有设置中,此非convex设置的收敛和概括结果也是新的。最后,进行了数值实验,以证明DP-SGDA在凸和非凸病例中的有效性。
translated by 谷歌翻译
成对学习正在接受越来越多的关注,因为它涵盖了许多重要的机器学习任务,例如度量学习,AUC最大化和排名。研究成对学习的泛化行为是重要的。然而,现有的泛化分析主要侧重于凸面的目标函数,使非挖掘学习远远较少。此外,导出用于成对学习的泛化性能的当前学习速率主要是较慢的顺序。通过这些问题的动机,我们研究了非透露成对学习的泛化性能,并提供了改进的学习率。具体而言,我们基于其分析经验风险最小化器,梯度下降和随机梯度下降成对比对学习的不同假设,在不同假设下产生不同均匀的梯度梯度收敛。我们首先在一般的非核心环境中成功地为这些算法建立了学习率,在普通非核心环境中,分析揭示了优化和泛化之间的权衡的见解以及早期停止的作用。然后,我们调查非凸起学习的概括性表现,具有梯度优势曲率状态。在此设置中,我们推出了更快的订单$ \ mathcal {o}(1 / n)$的学习速率,其中$ n $是样本大小。如果最佳人口风险很小,我们进一步将学习率提高到$ \ mathcal {o}(1 / n ^ 2)$,这是我们的知识,是第一个$ \ mathcal {o}( 1 / n ^ 2)$ - 成对学习的速率类型,无论是凸面还是非渗透学习。总的来说,我们系统地分析了非凸显成对学习的泛化性能。
translated by 谷歌翻译
最近已经建立了近似稳定的学习算法的指数概括范围。但是,统一稳定性的概念是严格的,因为它是数据生成分布不变的。在稳定性的较弱和分布依赖性的概念下,例如假设稳定性和$ L_2 $稳定性,文献表明,在一般情况下,只有多项式概括界限是可能的。本文解决了这两个结果方案之间的长期紧张关系,并在融合信心的经典框架内取得了进步。为此,我们首先建立了一个预测的第一刻,通用错误限制了具有$ l_2 $稳定性的潜在随机学习算法,然后我们证明了一个正确设计的subbagagging流程会导致几乎紧密的指数概括性限制在上面数据和算法的随机性。我们将这些通用结果进一步实质性地将随机梯度下降(SGD)实现,以提高凸或非凸优化的高概率概括性范围,而自然时间衰减的学习速率则可以通过现有的假设稳定性或均匀的假设稳定性来证明这一点。基于稳定的结果。
translated by 谷歌翻译
尽管已经取得了重大的理论进步,但揭示了过度参数化神经网络的概括之谜仍然难以捉摸。在本文中,我们通过利用算法稳定性的概念来研究浅神经网络(SNN)的概括行为。我们考虑梯度下降(GD)和随机梯度下降(SGD)来训练SNN,因为这两者都通过通过早期停止来平衡优化和概括来发展一致的多余风险范围。与现有的GD分析相比,我们的新分析需要放松的过度参数化假设,并且还适用于SGD。改进的关键是更好地估计经验风险的Hessian矩阵的最小特征值,以及通过提供对其迭代材料的精制估计,沿GD和SGD的轨迹沿GD和SGD的轨迹进行了更好的估计。
translated by 谷歌翻译
我们研究了凸面和非凸面设置的差异私有随机优化。对于凸面的情况,我们专注于非平滑通用线性损耗(GLL)的家庭。我们的$ \ ell_2 $ setting算法在近线性时间内实现了最佳的人口风险,而最知名的差异私有算法在超线性时间内运行。我们的$ \ ell_1 $ setting的算法具有近乎最佳的人口风险$ \ tilde {o} \ big(\ sqrt {\ frac {\ log {n \ log {d}} {n \ varepsilon} \ big)$,以及避免\ Cite {ASI:2021}的尺寸依赖性下限为一般非平滑凸损耗。在差别私有的非凸面设置中,我们提供了几种新算法,用于近似居住的人口风险。对于具有平稳损失和多面体约束的$ \ ell_1 $ tuce,我们提供第一个近乎尺寸的独立速率$ \ tilde o \ big(\ frac {\ log ^ {2/3} {d}} {{(n \ varepsilon)^ {1/3}}} \大)在线性时间。对于具有平滑损耗的约束$ \ ell_2 $ -case,我们获得了速率$ \ tilde o \ big(\ frac {1} {n ^ {1/3}} + \ frac {d ^ { 1/5}} {(n \ varepsilon)^ {2/5}} \ big)$。最后,对于$ \ ell_2 $ -case,我们为{\ em非平滑弱凸}的第一种方法提供了速率$ \ tilde o \ big(\ frac {1} {n ^ {1/4}} + \ FRAC {D ^ {1/6}} {(n \ varepsilon)^ {1/3}} \ big)$,它在$ d = o(\ sqrt {n})时匹配最好的现有非私有算法$。我们还将上面的所有结果扩展到Non-Convex $ \ ell_2 $ setting到$ \ ell_p $ setting,其中$ 1 <p \ leq 2 $,只有polylogarithmic(维度在尺寸)的速度下。
translated by 谷歌翻译
我们在差分隐私(DP)的约束下,用重型数据研究随机凸优化。大多数关于此问题的事先工作仅限于损耗功能是Lipschitz的情况。相反,正如王,肖,德拉达斯和徐\ Cite {wangxdx20}所引入的那样,假设渐变的分布已涉及$ k $ --th时刻,我们研究了一般凸损失功能。我们在集中DP下提供了改善的上限,用于凸起的凸起和强凸损失功能。一路上,我们在纯粹和集中的DP下获得了私人平均估计的私有平均估计的新算法。最后,我们证明了私有随机凸性优化的近乎匹配的下限,具有强凸损失和平均估计,显示纯净和浓缩的DP之间的新分离。
translated by 谷歌翻译
在本文中,我们研究了非平滑凸函数的私人优化问题$ f(x)= \ mathbb {e} _i f_i(x)$ on $ \ mathbb {r}^d $。我们表明,通过将$ \ ell_2^2 $正规器添加到$ f(x)$并从$ \ pi(x)\ propto \ exp(-k(f(x)+\ mu \ \ | | x \ | _2^2/2))$恢复已知的最佳经验风险和$(\ epsilon,\ delta)$ - dp的已知最佳经验风险和人口损失。此外,我们将展示如何使用$ \ widetilde {o}(n \ min(d,n))$ QUERIES $ QUERIES $ f_i(x)$用于DP-SCO,其中$ n $是示例数/用户和$ d $是环境维度。我们还在评估查询的数量上给出了一个(几乎)匹配的下限$ \ widetilde {\ omega}(n \ min(d,n))$。我们的结果利用以下具有独立感兴趣的工具:(1)如果损失函数强烈凸出并且扰动是Lipschitz,则证明指数机制的高斯差异隐私(GDP)。我们的隐私约束是\ emph {optimal},因为它包括高斯机制的隐私性,并使用等仪不等式证明了强烈的对数concove措施。 (2)我们展示如何从$ \ exp(-f(x) - \ mu \ | x \ | |^2_2/2)$ g $ -lipschitz $ f $带有$ \ eta $的总变化中的错误(电视)使用$ \ widetilde {o}((g^2/\ mu)\ log^2(d/\ eta))$无偏查询到$ f(x)$。这是第一个在dimension $ d $和精度$ \ eta $上具有\ emph {polylogarithmic依赖的查询复杂性的采样器。
translated by 谷歌翻译
当算法的内部状态\ emph {private}时,迭代随机学习算法的信息泄漏是什么?每个特定培训时期对通过已发布的模型泄漏的贡献是多少?我们研究了此问题的嘈杂梯度下降算法,并在整个训练过程中对r \'enyi差异隐私损失的\ emph {dynamics}进行建模。我们的分析跟踪了\ emph {tigh}绑定在r \'enyi差异上的一对概率分布之间的差异,而不是在相邻数据集中训练的模型的参数。我们证明,隐私损失对平稳且强烈凸出的损失函数的呈指数呈指数收敛,这是对组成定理的显着改进(通过在所有中间梯度计算中,其总价值高于其总价值来过度估计隐私损失)。对于Lipschitz,光滑且强烈凸出的损失功能,我们证明了最佳效用,具有较小的梯度复杂性,用于嘈杂的梯度下降算法。
translated by 谷歌翻译
差异化(DP)随机凸优化(SCO)在可信赖的机器学习算法设计中无处不在。本文研究了DP-SCO问题,该问题是从分布中采样并顺序到达的流媒体数据。我们还考虑了连续发布模型,其中与私人信息相关的参数已在每个新数据(通常称为在线算法)上更新和发布。尽管已经开发了许多算法,以实现不同$ \ ell_p $ norm几何的最佳多余风险,但是没有一个现有的算法可以适应流和持续发布设置。为了解决诸如在线凸优化和隐私保护的挑战,我们提出了一种在线弗兰克 - 沃尔夫算法的私人变体,并带有递归梯度,以减少差异,以更新和揭示每个数据上的参数。结合自适应差异隐私分析,我们的在线算法在线性时间中实现了最佳的超额风险,当$ 1 <p \ leq 2 $和最先进的超额风险达到了非私人较低的风险时,当$ 2 <p \ p \ $ 2 <p \ leq \ infty $。我们的算法也可以扩展到$ p = 1 $的情况,以实现几乎与维度无关的多余风险。虽然先前的递归梯度降低结果仅在独立和分布的样本设置中才具有理论保证,但我们在非平稳环境中建立了这样的保证。为了展示我们方法的优点,我们设计了第一个DP算法,用于具有对数遗憾的高维广义线性土匪。使用多种DP-SCO和DP-Bandit算法的比较实验表现出所提出的算法的功效和实用性。
translated by 谷歌翻译
在本文中,我们重新审视了私人经验风险最小化(DP-erm)和差异私有随机凸优化(DP-SCO)的问题。我们表明,来自统计物理学(Langevin Exfusion(LD))的经过良好研究的连续时间算法同时为DP-SCO和DP-SCO提供了最佳的隐私/实用性权衡,$ \ epsilon $ -DP和$ $ \ epsilon $ -DP和$ (\ epsilon,\ delta)$ - dp均用于凸和强烈凸损失函数。我们为LD提供新的时间和尺寸独立统一稳定性,并使用我们为$ \ epsilon $ -DP提供相应的最佳超额人口风险保证。 $ \ epsilon $ -DP的DP-SCO保证的一个重要属性是,它们将非私人最佳界限匹配为$ \ epsilon \与\ infty $。在此过程中,我们提供了各种技术工具,这些工具可能引起独立的关注:i)在两个相邻数据集上运行损失功能时,一个新的r \'enyi Divergence绑定了LD,ii)最后一个过多的经验风险范围迭代LD,类似于Shamir和Zhang的嘈杂随机梯度下降(SGD)和iii)的LD,对LD进行了两期多余的风险分析,其中第一阶段是当扩散在任何合理意义上都没有在任何合理意义上融合到固定分布时,在第二阶段扩散已收敛到吉布斯分布的变体。我们的普遍性结果至关重要地依赖于LD的动力学。当它融合到固定分布时,我们获得了$ \ epsilon $ -DP的最佳界限。当它仅在很短的时间内运行$ \ propto 1/p $时,我们在$(\ epsilon,\ delta)$ -DP下获得最佳界限。在这里,$ p $是模型空间的维度。
translated by 谷歌翻译
在本文中,我们研究了模型 - 不可知的元学习(MAML)算法的泛化特性,用于监督学习问题。我们专注于我们培训MAML模型超过$ M $任务的设置,每个都有$ n $数据点,并从两个视角表征其泛化错误:首先,我们假设测试时间的新任务是其中之一培训任务,我们表明,对于强烈凸的客观函数,预期的多余人口损失是由$ {\ mathcal {o}}(1 / mn)$的界限。其次,我们考虑MAML算法的概念任务的泛化,并表明产生的泛化误差取决于新任务的底层分布与培训过程中观察到的任务之间的总变化距离。我们的校对技术依赖于算法稳定性与算法的泛化界之间的连接。特别是,我们为元学习算法提出了一种新的稳定性定义,这使我们能够捕获每项任务的任务数量的任务数量的角色$ N $对MAML的泛化误差。
translated by 谷歌翻译
We show that parametric models trained by a stochastic gradient method (SGM) with few iterations have vanishing generalization error. We prove our results by arguing that SGM is algorithmically stable in the sense of Bousquet and Elisseeff. Our analysis only employs elementary tools from convex and continuous optimization. We derive stability bounds for both convex and non-convex optimization under standard Lipschitz and smoothness assumptions.Applying our results to the convex case, we provide new insights for why multiple epochs of stochastic gradient methods generalize well in practice. In the non-convex case, we give a new interpretation of common practices in neural networks, and formally show that popular techniques for training large deep models are indeed stability-promoting. Our findings conceptually underscore the importance of reducing training time beyond its obvious benefit.
translated by 谷歌翻译
我们考虑对重尾数据的随机凸优化,并保证成为私人(DP)。此问题的先前工作仅限于梯度下降(GD)方法,这对于大规模问题效率低下。在本文中,我们解决了此问题,并通过剪辑得出了私人随机方法的第一个高概率范围。对于一般凸问题,我们得出过多的人口风险$ \ tilde {o} \ left(\ frac {d^{1/7} \ sqrt {\ ln \ frac {(n \ epsilon) }}} {(n \ epsilon)^{2/7}}} \ right)$和$ \ tilde {o} \ left(\ frac {d^{1/7} \ ln \ ln \ frac {(n \ epsilon)^(n \ epsilon)^ 2} {\ beta d}} {(n \ epsilon)^{2/7}}} \ right)$分别在有限或无限的域假设下(此处$ n $是样本大小,$ d $是数据,$ \ beta $是置信度,$ \ epsilon $是私人级别)。然后,我们将分析扩展到强烈的凸情况和非平滑案例(可用于使用H $ \ ddot {\ text {o}} $ lder-lder-continuule梯度的通用光滑目标)。我们建立了新的超额风险界限,而没有有限的域名。在相应情况下,上面的结果比现有方法降低了多余的风险和梯度复杂性。进行数值实验以证明理论改进是合理的。
translated by 谷歌翻译
我们提出并分析了算法,以解决用户级差分隐私约束下的一系列学习任务。用户级DP仅保证只保证个人样本的隐私,而是保护用户的整个贡献($ M \ GE 1 $ Samples),而不是对信息泄漏提供更严格但更现实的保护。我们表明,对于高维平均估计,具有平稳损失,随机凸优化和学习假设类别的经验风险最小化,具有有限度量熵,隐私成本随着用户提供的$ O(1 / \ SQRT {M})$减少更多样本。相比之下,在增加用户数量$ N $时,隐私成本以较快的价格降低(1 / n)$率。我们将这些结果与下界相提并论,显示了我们算法的最低限度估计和随机凸优化的算法。我们的算法依赖于私有平均估计的新颖技术,其任意维度与误差缩放为浓度半径$ \ tai $的分布而不是整个范围。
translated by 谷歌翻译
在本文中,我们提出了一种针对SGD轨迹的新覆盖技术。该定位提供了一种算法特异性的复杂性,该复杂性通过覆盖数来衡量,与标准均匀覆盖的参数相比,该范围独立于维度的基数,从而导致指数尺寸依赖性。基于这种本地化结构,我们表明,如果目标函数是分段的有限扰动,则用$ p $零件强烈凸出和光滑的功能,即非convex和非平滑词,则概括性误差可以由上限。 $ o(\ sqrt {(\ log n \ log(np))/n})$,其中$ n $是数据示例的数量。特别是,此速率与维度无关,并且不需要尽早停止和衰减的步骤。最后,我们在各种环境中采用这些结果,并为多级线性模型,多级支持向量机和$ k $ - 均值聚类用于硬和软标签设置,并改善已知的最先进的范围,从而改善了已知的最先进的, - 阿尔特费率。
translated by 谷歌翻译
我们研究了私人(DP)随机优化(SO),其中包含非Lipschitz连续的离群值和损失函数的数据。迄今为止,DP上的绝大多数工作,因此假设损失是Lipschitz(即随机梯度均匀边界),并且它们的误差界限与损失的Lipschitz参数。尽管此假设很方便,但通常是不现实的:在需要隐私的许多实际问题中,数据可能包含异常值或无限制,导致某些随机梯度具有较大的规范。在这种情况下,Lipschitz参数可能过于较大,从而导致空虚的多余风险范围。因此,在最近的工作[WXDX20,KLZ22]上,我们做出了较弱的假设,即随机梯度已经限制了$ k $ - them-th Moments for Boy $ k \ geq 2 $。与DP Lipschitz上的作品相比,我们的多余风险量表与$ k $ 3的时刻限制,而不是损失的Lipschitz参数,从而在存在异常值的情况下允许速度明显更快。对于凸面和强烈凸出损失函数,我们提供了第一个渐近最佳的过量风险范围(最多可对数因素)。此外,与先前的作品[WXDX20,KLZ22]相反,我们的边界不需要损失函数是可区分的/平滑的。我们还设计了一种加速算法,该算法在线性时间内运行并提高了(与先前的工作相比),并且几乎最佳的过量风险因平滑损失而产生。此外,我们的工作是第一个解决非convex non-lipschitz损失功能的工作,以满足近端不平等现象。这涵盖了一些类别的神经网,以及其他实用模型。我们的近端PL算法几乎具有最佳的多余风险,几乎与强凸的下限相匹配。最后,我们提供了算法的洗牌DP变化,这些变化不需要受信任的策展人(例如,用于分布式学习)。
translated by 谷歌翻译