在本文中,我们研究了非平滑凸函数的私人优化问题$ f(x)= \ mathbb {e} _i f_i(x)$ on $ \ mathbb {r}^d $。我们表明,通过将$ \ ell_2^2 $正规器添加到$ f(x)$并从$ \ pi(x)\ propto \ exp(-k(f(x)+\ mu \ \ | | x \ | _2^2/2))$恢复已知的最佳经验风险和$(\ epsilon,\ delta)$ - dp的已知最佳经验风险和人口损失。此外,我们将展示如何使用$ \ widetilde {o}(n \ min(d,n))$ QUERIES $ QUERIES $ f_i(x)$用于DP-SCO,其中$ n $是示例数/用户和$ d $是环境维度。我们还在评估查询的数量上给出了一个(几乎)匹配的下限$ \ widetilde {\ omega}(n \ min(d,n))$。我们的结果利用以下具有独立感兴趣的工具:(1)如果损失函数强烈凸出并且扰动是Lipschitz,则证明指数机制的高斯差异隐私(GDP)。我们的隐私约束是\ emph {optimal},因为它包括高斯机制的隐私性,并使用等仪不等式证明了强烈的对数concove措施。 (2)我们展示如何从$ \ exp(-f(x) - \ mu \ | x \ | |^2_2/2)$ g $ -lipschitz $ f $带有$ \ eta $的总变化中的错误(电视)使用$ \ widetilde {o}((g^2/\ mu)\ log^2(d/\ eta))$无偏查询到$ f(x)$。这是第一个在dimension $ d $和精度$ \ eta $上具有\ emph {polylogarithmic依赖的查询复杂性的采样器。
translated by 谷歌翻译
我们提出了一个新的框架,用于对凸函数的差异私有优化,这些功能是任意规范$ \ normx {\ cdot} $中的Lipschitz。我们的算法基于一种正规的指数机制,该机制从密度$ \ propto \ exp(-k(f+\ mu r))$中进行样品,其中$ f $是经验损失,$ r $是一种常规化器,它与强烈的convex convex converize尊重$ \ normx {\ cdot} $,将\ cite {gll22}的最新作品推广到非Euclidean设置。我们表明,这种机制可以满足高斯差异隐私,并通过使用凸几何形状的本地化工具来解决DP-MER(经验风险最小化)和DP-SCO(随机凸优化)。我们的框架是第一个在一般规范空间中适用于私有凸优化的框架,并直接恢复了镜下下降的非私有SCO率,作为隐私参数$ \ eps \ to \ infty $。作为应用程序,对于LipsChitz优化了$ \ ell_p $ norms for(1,2)$中的所有$ p \ norms,我们获得了第一个最佳隐私性权衡权衡;对于$ p = 1 $,我们提高了最近的作品\ cite {asifkt21,bassilygn21}获得的权衡,至少通过对数因素。我们的$ \ ell_p $ norm和schatten- $ p $规范优化框架与多项式时间采样器相辅相成,我们的查询复杂性明确绑定。
translated by 谷歌翻译
我们提出并分析了算法,以解决用户级差分隐私约束下的一系列学习任务。用户级DP仅保证只保证个人样本的隐私,而是保护用户的整个贡献($ M \ GE 1 $ Samples),而不是对信息泄漏提供更严格但更现实的保护。我们表明,对于高维平均估计,具有平稳损失,随机凸优化和学习假设类别的经验风险最小化,具有有限度量熵,隐私成本随着用户提供的$ O(1 / \ SQRT {M})$减少更多样本。相比之下,在增加用户数量$ N $时,隐私成本以较快的价格降低(1 / n)$率。我们将这些结果与下界相提并论,显示了我们算法的最低限度估计和随机凸优化的算法。我们的算法依赖于私有平均估计的新颖技术,其任意维度与误差缩放为浓度半径$ \ tai $的分布而不是整个范围。
translated by 谷歌翻译
在本文中,我们重新审视了私人经验风险最小化(DP-erm)和差异私有随机凸优化(DP-SCO)的问题。我们表明,来自统计物理学(Langevin Exfusion(LD))的经过良好研究的连续时间算法同时为DP-SCO和DP-SCO提供了最佳的隐私/实用性权衡,$ \ epsilon $ -DP和$ $ \ epsilon $ -DP和$ (\ epsilon,\ delta)$ - dp均用于凸和强烈凸损失函数。我们为LD提供新的时间和尺寸独立统一稳定性,并使用我们为$ \ epsilon $ -DP提供相应的最佳超额人口风险保证。 $ \ epsilon $ -DP的DP-SCO保证的一个重要属性是,它们将非私人最佳界限匹配为$ \ epsilon \与\ infty $。在此过程中,我们提供了各种技术工具,这些工具可能引起独立的关注:i)在两个相邻数据集上运行损失功能时,一个新的r \'enyi Divergence绑定了LD,ii)最后一个过多的经验风险范围迭代LD,类似于Shamir和Zhang的嘈杂随机梯度下降(SGD)和iii)的LD,对LD进行了两期多余的风险分析,其中第一阶段是当扩散在任何合理意义上都没有在任何合理意义上融合到固定分布时,在第二阶段扩散已收敛到吉布斯分布的变体。我们的普遍性结果至关重要地依赖于LD的动力学。当它融合到固定分布时,我们获得了$ \ epsilon $ -DP的最佳界限。当它仅在很短的时间内运行$ \ propto 1/p $时,我们在$(\ epsilon,\ delta)$ -DP下获得最佳界限。在这里,$ p $是模型空间的维度。
translated by 谷歌翻译
我们在差分隐私(DP)的约束下,用重型数据研究随机凸优化。大多数关于此问题的事先工作仅限于损耗功能是Lipschitz的情况。相反,正如王,肖,德拉达斯和徐\ Cite {wangxdx20}所引入的那样,假设渐变的分布已涉及$ k $ --th时刻,我们研究了一般凸损失功能。我们在集中DP下提供了改善的上限,用于凸起的凸起和强凸损失功能。一路上,我们在纯粹和集中的DP下获得了私人平均估计的私有平均估计的新算法。最后,我们证明了私有随机凸性优化的近乎匹配的下限,具有强凸损失和平均估计,显示纯净和浓缩的DP之间的新分离。
translated by 谷歌翻译
We introduce a new tool for stochastic convex optimization (SCO): a Reweighted Stochastic Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density. Combining ReSQue with recent advances in ball oracle acceleration [CJJJLST20, ACJJS21], we develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings. For a SCO objective constrained to the unit ball in $\mathbb{R}^d$, we obtain the following results (up to polylogarithmic factors). We give a parallel algorithm obtaining optimization error $\epsilon_{\text{opt}}$ with $d^{1/3}\epsilon_{\text{opt}}^{-2/3}$ gradient oracle query depth and $d^{1/3}\epsilon_{\text{opt}}^{-2/3} + \epsilon_{\text{opt}}^{-2}$ gradient queries in total, assuming access to a bounded-variance stochastic gradient estimator. For $\epsilon_{\text{opt}} \in [d^{-1}, d^{-1/4}]$, our algorithm matches the state-of-the-art oracle depth of [BJLLS19] while maintaining the optimal total work of stochastic gradient descent. We give an $(\epsilon_{\text{dp}}, \delta)$-differentially private algorithm which, given $n$ samples of Lipschitz loss functions, obtains near-optimal optimization error and makes $\min(n, n^2\epsilon_{\text{dp}}^2 d^{-1}) + \min(n^{4/3}\epsilon_{\text{dp}}^{1/3}, (nd)^{2/3}\epsilon_{\text{dp}}^{-1})$ queries to the gradients of these functions. In the regime $d \le n \epsilon_{\text{dp}}^{2}$, where privacy comes at no cost in terms of the optimal loss up to constants, our algorithm uses $n + (nd)^{2/3}\epsilon_{\text{dp}}^{-1}$ queries and improves recent advancements of [KLL21, AFKT21]. In the moderately low-dimensional setting $d \le \sqrt n \epsilon_{\text{dp}}^{3/2}$, our query complexity is near-linear.
translated by 谷歌翻译
在本文中,通过引入低噪声条件,我们研究了在随机凸出优化(SCO)的环境中,差异私有随机梯度下降(SGD)算法的隐私和效用(概括)表现。对于点心学习,我们建立了订单$ \ Mathcal {o} \ big(\ frac {\ sqrt {\ sqrt {d \ log(1/\ delta)}} {n \ epsilon} \ big)和$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \ \ \ \\ \ \ \ \ \ big(\ frac {\ frac {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt { Mathcal {o} \ big({n^{ - \ frac {1+ \ alpha} {2}}}}}}+\ frac {\ sqrt {d \ log(1/\ delta)}}} )$(\ epsilon,\ delta)$ - 差异化私有SGD算法,分别是较高的和$ \ alpha $ -h \'分别较旧的光滑损失,其中$ n $是样本尺寸,$ d $是维度。对于成对学习,受\ cite {lei2020sharper,lei2021Generalization}的启发,我们提出了一种基于梯度扰动的简单私人SGD算法,该算法满足$(\ epsilon,\ delta)$ - 差异性限制,并开发出了新颖的私密性,并且算法。特别是,我们证明我们的算法可以实现多余的风险利率$ \ MATHCAL {o} \ big(\ frac {1} {\ sqrt {n}}}+\ frac {\ frac {\ sqrt { delta)}}} {n \ epsilon} \ big)$带有梯度复杂性$ \ mathcal {o}(n)$和$ \ mathcal {o} \ big(n^{\ frac {\ frac {2- \ alpha} {1+ alpha} {1+ \ alpha}}}+n \ big)$,用于强烈平滑和$ \ alpha $ -h \'olde R平滑损失。此外,在低噪声环境中建立了更快的学习率,以实现平滑和非平滑损失。据我们所知,这是第一次实用分析,它提供了超过$ \ Mathcal {o} \ big(\ frac {1} {\ sqrt {\ sqrt {n}}+\ frac {\ sqrt {d sqrt {d \ sqrt {d \ sqrt { log(1/\ delta)}}} {n \ epsilon} \ big)$用于隐私提供成对学习。
translated by 谷歌翻译
当算法的内部状态\ emph {private}时,迭代随机学习算法的信息泄漏是什么?每个特定培训时期对通过已发布的模型泄漏的贡献是多少?我们研究了此问题的嘈杂梯度下降算法,并在整个训练过程中对r \'enyi差异隐私损失的\ emph {dynamics}进行建模。我们的分析跟踪了\ emph {tigh}绑定在r \'enyi差异上的一对概率分布之间的差异,而不是在相邻数据集中训练的模型的参数。我们证明,隐私损失对平稳且强烈凸出的损失函数的呈指数呈指数收敛,这是对组成定理的显着改进(通过在所有中间梯度计算中,其总价值高于其总价值来过度估计隐私损失)。对于Lipschitz,光滑且强烈凸出的损失功能,我们证明了最佳效用,具有较小的梯度复杂性,用于嘈杂的梯度下降算法。
translated by 谷歌翻译
我们研究了凸面和非凸面设置的差异私有随机优化。对于凸面的情况,我们专注于非平滑通用线性损耗(GLL)的家庭。我们的$ \ ell_2 $ setting算法在近线性时间内实现了最佳的人口风险,而最知名的差异私有算法在超线性时间内运行。我们的$ \ ell_1 $ setting的算法具有近乎最佳的人口风险$ \ tilde {o} \ big(\ sqrt {\ frac {\ log {n \ log {d}} {n \ varepsilon} \ big)$,以及避免\ Cite {ASI:2021}的尺寸依赖性下限为一般非平滑凸损耗。在差别私有的非凸面设置中,我们提供了几种新算法,用于近似居住的人口风险。对于具有平稳损失和多面体约束的$ \ ell_1 $ tuce,我们提供第一个近乎尺寸的独立速率$ \ tilde o \ big(\ frac {\ log ^ {2/3} {d}} {{(n \ varepsilon)^ {1/3}}} \大)在线性时间。对于具有平滑损耗的约束$ \ ell_2 $ -case,我们获得了速率$ \ tilde o \ big(\ frac {1} {n ^ {1/3}} + \ frac {d ^ { 1/5}} {(n \ varepsilon)^ {2/5}} \ big)$。最后,对于$ \ ell_2 $ -case,我们为{\ em非平滑弱凸}的第一种方法提供了速率$ \ tilde o \ big(\ frac {1} {n ^ {1/4}} + \ FRAC {D ^ {1/6}} {(n \ varepsilon)^ {1/3}} \ big)$,它在$ d = o(\ sqrt {n})时匹配最好的现有非私有算法$。我们还将上面的所有结果扩展到Non-Convex $ \ ell_2 $ setting到$ \ ell_p $ setting,其中$ 1 <p \ leq 2 $,只有polylogarithmic(维度在尺寸)的速度下。
translated by 谷歌翻译
To date, no "information-theoretic" frameworks for reasoning about generalization error have been shown to establish minimax rates for gradient descent in the setting of stochastic convex optimization. In this work, we consider the prospect of establishing such rates via several existing information-theoretic frameworks: input-output mutual information bounds, conditional mutual information bounds and variants, PAC-Bayes bounds, and recent conditional variants thereof. We prove that none of these bounds are able to establish minimax rates. We then consider a common tactic employed in studying gradient methods, whereby the final iterate is corrupted by Gaussian noise, producing a noisy "surrogate" algorithm. We prove that minimax rates cannot be established via the analysis of such surrogates. Our results suggest that new ideas are required to analyze gradient descent using information-theoretic techniques.
translated by 谷歌翻译
In this work, we give efficient algorithms for privately estimating a Gaussian distribution in both pure and approximate differential privacy (DP) models with optimal dependence on the dimension in the sample complexity. In the pure DP setting, we give an efficient algorithm that estimates an unknown $d$-dimensional Gaussian distribution up to an arbitrary tiny total variation error using $\widetilde{O}(d^2 \log \kappa)$ samples while tolerating a constant fraction of adversarial outliers. Here, $\kappa$ is the condition number of the target covariance matrix. The sample bound matches best non-private estimators in the dependence on the dimension (up to a polylogarithmic factor). We prove a new lower bound on differentially private covariance estimation to show that the dependence on the condition number $\kappa$ in the above sample bound is also tight. Prior to our work, only identifiability results (yielding inefficient super-polynomial time algorithms) were known for the problem. In the approximate DP setting, we give an efficient algorithm to estimate an unknown Gaussian distribution up to an arbitrarily tiny total variation error using $\widetilde{O}(d^2)$ samples while tolerating a constant fraction of adversarial outliers. Prior to our work, all efficient approximate DP algorithms incurred a super-quadratic sample cost or were not outlier-robust. For the special case of mean estimation, our algorithm achieves the optimal sample complexity of $\widetilde O(d)$, improving on a $\widetilde O(d^{1.5})$ bound from prior work. Our pure DP algorithm relies on a recursive private preconditioning subroutine that utilizes the recent work on private mean estimation [Hopkins et al., 2022]. Our approximate DP algorithms are based on a substantial upgrade of the method of stabilizing convex relaxations introduced in [Kothari et al., 2022].
translated by 谷歌翻译
对于$ d $ -dimensional log-tand distribus $ \ pi(\ theta)\ propto e ^ { - f(\ theta)} $ on polytope $ k $,我们考虑从分发$ \输出样本的问题nu $哪个是$ o(\ varepsilon)$ - 关闭无限距离$ \ sup _ {\ theta \在k} | \ log \ frac {\ nu(\ theta)} {\ pi(\ theta)} | $ $ \ pi $。具有无限远距离保证的这种采样器对于差异私密优化,特别是具有总变化距离或KL发散界限的传统采样算法不足以保证差别隐私。我们的主要结果是一种从分发$ o(\ varepsilon)$的点输出点 - 接近$ \ pi $ infifinity - 距离,需要$ o((md + dl ^ 2r ^ 2)\ times(lr + d \ log(\ frac {rd + lrd} {\ varepsilon r}))\ times md ^ {\ omega-1})$算术运算,其中$ f $ in $ l $ -lipschitz,$ k $由$ m $不平等,包含在半径$ r $的球中,并包含一个较小的半径$ $ $ $ r $,$ \ omega $是矩阵乘法常量。特别地,此运行时是在$ \ FRAC {1} {\ varepsilon} $中的对数,并显着提高了先前的作品。从技术上讲,我们从先前的作品离开,在$ \ frac {1} {\ varepsilon ^ 2} $ - 以$ k $的离散化,以获得$ o(\ varepsilon)$无限距离错误,并呈现一种方法将连续样本从$ k $转换为与具有无限界限的样本到样本。为了实现对$ D $的改进依赖,我们提出了一个“软阈值”版本的Dikin Walk,可能是独立的兴趣。将我们的算法插入指数机制的框架,在$ \ varepsilon $ -pure的运行时间内输出类似的改进,用于优化问题,例如Lipschitz-convex功能的经验风险和低秩近似,同时仍然实现最有名的已知效用范围。
translated by 谷歌翻译
在这项工作中,我们在用户级差异隐私下研究高维平均值估计,并设计$(\ varepsilon,\ delta)$ - 使用尽可能少的用户差异化私人机制。特别是,即使用户数量低至$ o(\ frac {1} {\ varepsilon } \ log \ frac {1} {\ delta})$。有趣的是,这对\ emph {users}的数量绑定到独立于维度(尽管\ emph {samples aper users}的数量被允许以多项式依赖于尺寸),这与先前需要用户数量的工作数量不同。在多项式上依赖于维度。这解决了Amin等人首先提出的问题。此外,我们的机制可抵抗高达$ 49 \%用户的损坏。最后,我们的结果还适用于与少数用户私下学习离散分布的最佳算法,回答Liu等人的问题,以及更广泛的问题,例如随机凸优化和通过差异化的随机梯度优化和随机梯度下降的变体私人平均估计。
translated by 谷歌翻译
随机梯度下降(SGDA)及其变体一直是解决最小值问题的主力。但是,与研究有差异隐私(DP)约束的经过良好研究的随机梯度下降(SGD)相反,在理解具有DP约束的SGDA的概括(实用程序)方面几乎没有工作。在本文中,我们使用算法稳定性方法在不同的设置中建立DP-SGDA的概括(实用程序)。特别是,对于凸 - 凸环设置,我们证明DP-SGDA可以在平滑和非平滑案例中都可以根据弱原始二元人群风险获得最佳的效用率。据我们所知,这是在非平滑案例中DP-SGDA的第一个已知结果。我们进一步在非convex-rong-concave环境中提供了实用性分析,这是原始人口风险的首个已知结果。即使在非私有设置中,此非convex设置的收敛和概括结果也是新的。最后,进行了数值实验,以证明DP-SGDA在凸和非凸病例中的有效性。
translated by 谷歌翻译
我们研究了具有重型数据的差异私有随机凸优化(DP-SCO)的问题。具体而言,我们专注于$ \ epsilon $ -dp模型中的$ \ ell_1 $ -norm线性回归。虽然以前的大多数工作侧重于丢失功能是Lipschitz的情况下,但在这里,我们只需要假设变体有界矩。首先,我们研究$ \ ell_2 $ norm的数据的界限二阶时刻。我们提出了一种基于指数机制的算法,并表明可以实现$ \ tilde {o}的上限(\ sqrt {\ frac {d} {n \ epsilon}})$(具有很高的概率)。接下来,我们在(1,2)$中的一些$ \ theta \中,您可以放松对绑定的$ \θtthnard时刻的假设,并表明可以实现$ \ tilde {o}的上限(({ \ frac {d} {n \ epsilon}})^ \ frac {\ theta-1} {\ theta})$。我们的算法也可以扩展到更轻松的情况,其中只有数据的每个坐标都有界矩,我们可以获得$ \ tilde {o}的上限({\ frac {d} {\ sqrt {n \ epsilon} }})$和$ \ tilde {o}({\ frac {d} {({n \ epsilon})^ \ frac {\ theta-1} {\ theta}})$ in第二和$ \ theta $ -th时刻案例。
translated by 谷歌翻译
随机优化在最小化机器学习中的目标功能方面发现了广泛的应用,这激发了许多理论研究以了解其实际成功。大多数现有研究都集中在优化误差的收敛上,而随机优化的概括分析却落后了。在实践中经常遇到的非洞穴和非平滑问题的情况尤其如此。在本文中,我们初始化了对非凸和非平滑问题的随机优化的系统稳定性和概括分析。我们介绍了新型算法稳定性措施,并在人口梯度和经验梯度之间建立了定量联系,然后进一步扩展,以研究经验风险的莫罗(Moreau)膜之间的差距和人口风险的差距。据我们所知,尚未在文献中研究稳定性与概括之间的这些定量联系。我们引入了一类采样确定的算法,为此我们为三种稳定性度量而开发界限。最后,我们将这些讨论应用于随机梯度下降及其自适应变体的误差界限,我们在其中显示如何通过调整步骤大小和迭代次数来实现隐式正则化。
translated by 谷歌翻译
成对学习是指损失函数取决于一对情况的学习任务。它实例化了许多重要的机器学习任务,如双级排名和度量学习。一种流行的方法来处理成对学习中的流数据是在线梯度下降(OGD)算法,其中需要将当前实例配对以前具有足够大的尺寸的先前实例的电流实例,因此遭受可扩展性问题。在本文中,我们提出了用于成对学习的简单随机和在线梯度下降方法。与现有研究的显着差异是,我们仅将当前实例与前一个构建梯度方向配对,这在存储和计算复杂性中是有效的。我们为凸和非凸起的展示结果,优化和泛化误差界以及平滑和非光滑问题都开发了新颖的稳定性结果,优化和泛化误差界限。我们引入了新颖的技术来解耦模型的依赖性和前一个例子在优化和泛化分析中。我们的研究解决了使用具有非常小的固定尺寸的缓冲集开发OGD的有意义的泛化范围的开放问题。我们还扩展了我们的算法和稳定性分析,以便为成对学习开发差异私有的SGD算法,这显着提高了现有结果。
translated by 谷歌翻译
我们呈现渐近最优的$(\ epsilon,\ delta)$差异私有机制,用于回答多个,自适应的$ \ delta $ -sursitive查询,解决Steinke和Ullman的猜想[2020]。我们的算法具有显着的优点,即它向每个查询增加独立的有界噪声,从而提供绝对误差。此外,我们在自适应数据分析中应用了我们的算法,获得了使用有限样本对某些基础分布的多个查询的改进保证。数值计算表明,界限噪声机制在许多标准设置中优于高斯机制。
translated by 谷歌翻译
我们给出了第一个多项式算法来估计$ d $ -variate概率分布的平均值,从$ \ tilde {o}(d)$独立的样本受到纯粹的差异隐私的界限。此问题的现有算法无论是呈指数运行时间,需要$ \ OMEGA(D ^ {1.5})$样本,或仅满足较弱的集中或近似差分隐私条件。特别地,所有先前的多项式算法都需要$ d ^ {1+ \ omega(1)} $ samples,以保证“加密”高概率,1-2 ^ { - d ^ {\ omega(1) $,虽然我们的算法保留$ \ tilde {o}(d)$ SAMPS复杂性即使在此严格设置中也是如此。我们的主要技术是使用强大的方块方法(SOS)来设计差异私有算法的新方法。算法的证据是在高维算法统计数据中的许多近期作品中的一个关键主题 - 显然需要指数运行时间,但可以通过低度方块证明可以捕获其分析可以自动变成多项式 - 时间算法具有相同的可证明担保。我们展示了私有算法的类似证据现象:工作型指数机制的实例显然需要指数时间,但可以用低度SOS样张分析的指数时间,可以自动转换为多项式差异私有算法。我们证明了捕获这种现象的元定理,我们希望在私人算法设计中广泛使用。我们的技术还在高维度之间绘制了差异私有和强大统计数据之间的新连接。特别是通过我们的校验算法镜头来看,几次研究的SOS证明在近期作品中的算法稳健统计中直接产生了我们差异私有平均估计算法的关键组成部分。
translated by 谷歌翻译
We consider the constrained sampling problem where the goal is to sample from a distribution $\pi(x)\propto e^{-f(x)}$ and $x$ is constrained on a convex body $\mathcal{C}\subset \mathbb{R}^d$. Motivated by penalty methods from optimization, we propose penalized Langevin Dynamics (PLD) and penalized Hamiltonian Monte Carlo (PHMC) that convert the constrained sampling problem into an unconstrained one by introducing a penalty function for constraint violations. When $f$ is smooth and the gradient is available, we show $\tilde{\mathcal{O}}(d/\varepsilon^{10})$ iteration complexity for PLD to sample the target up to an $\varepsilon$-error where the error is measured in terms of the total variation distance and $\tilde{\mathcal{O}}(\cdot)$ hides some logarithmic factors. For PHMC, we improve this result to $\tilde{\mathcal{O}}(\sqrt{d}/\varepsilon^{7})$ when the Hessian of $f$ is Lipschitz and the boundary of $\mathcal{C}$ is sufficiently smooth. To our knowledge, these are the first convergence rate results for Hamiltonian Monte Carlo methods in the constrained sampling setting that can handle non-convex $f$ and can provide guarantees with the best dimension dependency among existing methods with deterministic gradients. We then consider the setting where unbiased stochastic gradients are available. We propose PSGLD and PSGHMC that can handle stochastic gradients without Metropolis-Hasting correction steps. When $f$ is strongly convex and smooth, we obtain an iteration complexity of $\tilde{\mathcal{O}}(d/\varepsilon^{18})$ and $\tilde{\mathcal{O}}(d\sqrt{d}/\varepsilon^{39})$ respectively in the 2-Wasserstein distance. For the more general case, when $f$ is smooth and non-convex, we also provide finite-time performance bounds and iteration complexity results. Finally, we test our algorithms on Bayesian LASSO regression and Bayesian constrained deep learning problems.
translated by 谷歌翻译