最近,有大量的工作致力于研究马尔可夫链随机梯度方法(MC-SGMS),这些方法主要集中于他们解决最小化问题的收敛分析。在本文中,我们通过统计学习理论框架中的算法稳定性镜头对MC-SGM进行了全面的MC-SGMS分析。对于经验风险最小化(ERM)问题,我们通过引入实用的论点稳定性来建立平稳和非平滑案例的最佳人口风险界限。对于最小值问题,我们建立了在平均参数稳定性和概括误差之间的定量连接,该误差扩展了均匀稳定性\ cite {lei2021Staritibal}的现有结果。我们进一步开发了预期和高概率的凸孔问题问题的第一个几乎最佳的收敛速率,这与我们的稳定性结果相结合,表明可以在平滑和非平滑案例中达到最佳的概括界限。据我们所知,这是对梯度从马尔可夫过程采样时对SGM的首次概括分析。
translated by 谷歌翻译
随机梯度下降(SGDA)及其变体一直是解决最小值问题的主力。但是,与研究有差异隐私(DP)约束的经过良好研究的随机梯度下降(SGD)相反,在理解具有DP约束的SGDA的概括(实用程序)方面几乎没有工作。在本文中,我们使用算法稳定性方法在不同的设置中建立DP-SGDA的概括(实用程序)。特别是,对于凸 - 凸环设置,我们证明DP-SGDA可以在平滑和非平滑案例中都可以根据弱原始二元人群风险获得最佳的效用率。据我们所知,这是在非平滑案例中DP-SGDA的第一个已知结果。我们进一步在非convex-rong-concave环境中提供了实用性分析,这是原始人口风险的首个已知结果。即使在非私有设置中,此非convex设置的收敛和概括结果也是新的。最后,进行了数值实验,以证明DP-SGDA在凸和非凸病例中的有效性。
translated by 谷歌翻译
成对学习是指损失函数取决于一对情况的学习任务。它实例化了许多重要的机器学习任务,如双级排名和度量学习。一种流行的方法来处理成对学习中的流数据是在线梯度下降(OGD)算法,其中需要将当前实例配对以前具有足够大的尺寸的先前实例的电流实例,因此遭受可扩展性问题。在本文中,我们提出了用于成对学习的简单随机和在线梯度下降方法。与现有研究的显着差异是,我们仅将当前实例与前一个构建梯度方向配对,这在存储和计算复杂性中是有效的。我们为凸和非凸起的展示结果,优化和泛化误差界以及平滑和非光滑问题都开发了新颖的稳定性结果,优化和泛化误差界限。我们引入了新颖的技术来解耦模型的依赖性和前一个例子在优化和泛化分析中。我们的研究解决了使用具有非常小的固定尺寸的缓冲集开发OGD的有意义的泛化范围的开放问题。我们还扩展了我们的算法和稳定性分析,以便为成对学习开发差异私有的SGD算法,这显着提高了现有结果。
translated by 谷歌翻译
在本文中,通过引入低噪声条件,我们研究了在随机凸出优化(SCO)的环境中,差异私有随机梯度下降(SGD)算法的隐私和效用(概括)表现。对于点心学习,我们建立了订单$ \ Mathcal {o} \ big(\ frac {\ sqrt {\ sqrt {d \ log(1/\ delta)}} {n \ epsilon} \ big)和$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \ \ \ \\ \ \ \ \ \ big(\ frac {\ frac {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt { Mathcal {o} \ big({n^{ - \ frac {1+ \ alpha} {2}}}}}}+\ frac {\ sqrt {d \ log(1/\ delta)}}} )$(\ epsilon,\ delta)$ - 差异化私有SGD算法,分别是较高的和$ \ alpha $ -h \'分别较旧的光滑损失,其中$ n $是样本尺寸,$ d $是维度。对于成对学习,受\ cite {lei2020sharper,lei2021Generalization}的启发,我们提出了一种基于梯度扰动的简单私人SGD算法,该算法满足$(\ epsilon,\ delta)$ - 差异性限制,并开发出了新颖的私密性,并且算法。特别是,我们证明我们的算法可以实现多余的风险利率$ \ MATHCAL {o} \ big(\ frac {1} {\ sqrt {n}}}+\ frac {\ frac {\ sqrt { delta)}}} {n \ epsilon} \ big)$带有梯度复杂性$ \ mathcal {o}(n)$和$ \ mathcal {o} \ big(n^{\ frac {\ frac {2- \ alpha} {1+ alpha} {1+ \ alpha}}}+n \ big)$,用于强烈平滑和$ \ alpha $ -h \'olde R平滑损失。此外,在低噪声环境中建立了更快的学习率,以实现平滑和非平滑损失。据我们所知,这是第一次实用分析,它提供了超过$ \ Mathcal {o} \ big(\ frac {1} {\ sqrt {\ sqrt {n}}+\ frac {\ sqrt {d sqrt {d \ sqrt {d \ sqrt { log(1/\ delta)}}} {n \ epsilon} \ big)$用于隐私提供成对学习。
translated by 谷歌翻译
随机优化在最小化机器学习中的目标功能方面发现了广泛的应用,这激发了许多理论研究以了解其实际成功。大多数现有研究都集中在优化误差的收敛上,而随机优化的概括分析却落后了。在实践中经常遇到的非洞穴和非平滑问题的情况尤其如此。在本文中,我们初始化了对非凸和非平滑问题的随机优化的系统稳定性和概括分析。我们介绍了新型算法稳定性措施,并在人口梯度和经验梯度之间建立了定量联系,然后进一步扩展,以研究经验风险的莫罗(Moreau)膜之间的差距和人口风险的差距。据我们所知,尚未在文献中研究稳定性与概括之间的这些定量联系。我们引入了一类采样确定的算法,为此我们为三种稳定性度量而开发界限。最后,我们将这些讨论应用于随机梯度下降及其自适应变体的误差界限,我们在其中显示如何通过调整步骤大小和迭代次数来实现隐式正则化。
translated by 谷歌翻译
Minimax优化已成为许多机器学习(ML)问题的骨干。尽管优化算法的收敛行为已在minimax设置中进行了广泛的研究,但它们在随机环境中的概括保证,即对经验数据训练的解决方案如何在看不见的测试数据上执行,但相对却相对均未被倍增。一个基本问题仍然难以捉摸:研究最小学习者的概括是什么?在本文中,我们的目标是首先证明原始风险是研究最小化中的普遍性的普遍指标,在简单的最小问题示例中失败了。此外,由于鞍点不存在,另一个流行的指标,即原始的双重风险,也无法表征非凸度问题的最小值问题的概括行为。因此,我们提出了一个新的指标,以研究最小学习者的概括:原始差距,以规避这些问题。接下来,我们在非convex-concave设置中得出原始差距的概括范围。作为我们分析的副产品,我们还解决了两个空旷的问题:在强大意义上,建立原始风险和原始偶发风险的概括范围,即没有强大的凹面或假设最大化和期望可以互换,而这些假设中的任何一个都可以互换在文献中需要。最后,我们利用这一新指标比较了两种流行算法的概括行为 - 梯度下降(GDA)和梯度下降 - 最大趋势 - 最小值优化。
translated by 谷歌翻译
最近已经建立了近似稳定的学习算法的指数概括范围。但是,统一稳定性的概念是严格的,因为它是数据生成分布不变的。在稳定性的较弱和分布依赖性的概念下,例如假设稳定性和$ L_2 $稳定性,文献表明,在一般情况下,只有多项式概括界限是可能的。本文解决了这两个结果方案之间的长期紧张关系,并在融合信心的经典框架内取得了进步。为此,我们首先建立了一个预测的第一刻,通用错误限制了具有$ l_2 $稳定性的潜在随机学习算法,然后我们证明了一个正确设计的subbagagging流程会导致几乎紧密的指数概括性限制在上面数据和算法的随机性。我们将这些通用结果进一步实质性地将随机梯度下降(SGD)实现,以提高凸或非凸优化的高概率概括性范围,而自然时间衰减的学习速率则可以通过现有的假设稳定性或均匀的假设稳定性来证明这一点。基于稳定的结果。
translated by 谷歌翻译
成对学习正在接受越来越多的关注,因为它涵盖了许多重要的机器学习任务,例如度量学习,AUC最大化和排名。研究成对学习的泛化行为是重要的。然而,现有的泛化分析主要侧重于凸面的目标函数,使非挖掘学习远远较少。此外,导出用于成对学习的泛化性能的当前学习速率主要是较慢的顺序。通过这些问题的动机,我们研究了非透露成对学习的泛化性能,并提供了改进的学习率。具体而言,我们基于其分析经验风险最小化器,梯度下降和随机梯度下降成对比对学习的不同假设,在不同假设下产生不同均匀的梯度梯度收敛。我们首先在一般的非核心环境中成功地为这些算法建立了学习率,在普通非核心环境中,分析揭示了优化和泛化之间的权衡的见解以及早期停止的作用。然后,我们调查非凸起学习的概括性表现,具有梯度优势曲率状态。在此设置中,我们推出了更快的订单$ \ mathcal {o}(1 / n)$的学习速率,其中$ n $是样本大小。如果最佳人口风险很小,我们进一步将学习率提高到$ \ mathcal {o}(1 / n ^ 2)$,这是我们的知识,是第一个$ \ mathcal {o}( 1 / n ^ 2)$ - 成对学习的速率类型,无论是凸面还是非渗透学习。总的来说,我们系统地分析了非凸显成对学习的泛化性能。
translated by 谷歌翻译
尽管已经取得了重大的理论进步,但揭示了过度参数化神经网络的概括之谜仍然难以捉摸。在本文中,我们通过利用算法稳定性的概念来研究浅神经网络(SNN)的概括行为。我们考虑梯度下降(GD)和随机梯度下降(SGD)来训练SNN,因为这两者都通过通过早期停止来平衡优化和概括来发展一致的多余风险范围。与现有的GD分析相比,我们的新分析需要放松的过度参数化假设,并且还适用于SGD。改进的关键是更好地估计经验风险的Hessian矩阵的最小特征值,以及通过提供对其迭代材料的精制估计,沿GD和SGD的轨迹沿GD和SGD的轨迹进行了更好的估计。
translated by 谷歌翻译
我们研究了凸面和非凸面设置的差异私有随机优化。对于凸面的情况,我们专注于非平滑通用线性损耗(GLL)的家庭。我们的$ \ ell_2 $ setting算法在近线性时间内实现了最佳的人口风险,而最知名的差异私有算法在超线性时间内运行。我们的$ \ ell_1 $ setting的算法具有近乎最佳的人口风险$ \ tilde {o} \ big(\ sqrt {\ frac {\ log {n \ log {d}} {n \ varepsilon} \ big)$,以及避免\ Cite {ASI:2021}的尺寸依赖性下限为一般非平滑凸损耗。在差别私有的非凸面设置中,我们提供了几种新算法,用于近似居住的人口风险。对于具有平稳损失和多面体约束的$ \ ell_1 $ tuce,我们提供第一个近乎尺寸的独立速率$ \ tilde o \ big(\ frac {\ log ^ {2/3} {d}} {{(n \ varepsilon)^ {1/3}}} \大)在线性时间。对于具有平滑损耗的约束$ \ ell_2 $ -case,我们获得了速率$ \ tilde o \ big(\ frac {1} {n ^ {1/3}} + \ frac {d ^ { 1/5}} {(n \ varepsilon)^ {2/5}} \ big)$。最后,对于$ \ ell_2 $ -case,我们为{\ em非平滑弱凸}的第一种方法提供了速率$ \ tilde o \ big(\ frac {1} {n ^ {1/4}} + \ FRAC {D ^ {1/6}} {(n \ varepsilon)^ {1/3}} \ big)$,它在$ d = o(\ sqrt {n})时匹配最好的现有非私有算法$。我们还将上面的所有结果扩展到Non-Convex $ \ ell_2 $ setting到$ \ ell_p $ setting,其中$ 1 <p \ leq 2 $,只有polylogarithmic(维度在尺寸)的速度下。
translated by 谷歌翻译
在本文中,我们研究了模型 - 不可知的元学习(MAML)算法的泛化特性,用于监督学习问题。我们专注于我们培训MAML模型超过$ M $任务的设置,每个都有$ n $数据点,并从两个视角表征其泛化错误:首先,我们假设测试时间的新任务是其中之一培训任务,我们表明,对于强烈凸的客观函数,预期的多余人口损失是由$ {\ mathcal {o}}(1 / mn)$的界限。其次,我们考虑MAML算法的概念任务的泛化,并表明产生的泛化误差取决于新任务的底层分布与培训过程中观察到的任务之间的总变化距离。我们的校对技术依赖于算法稳定性与算法的泛化界之间的连接。特别是,我们为元学习算法提出了一种新的稳定性定义,这使我们能够捕获每项任务的任务数量的任务数量的角色$ N $对MAML的泛化误差。
translated by 谷歌翻译
本文重点介绍了解决光滑非凸强凹入最小问题的随机方法,这导致了由于其深度学习中的潜在应用而受到越来越长的关注(例如,深度AUC最大化,分布鲁棒优化)。然而,大多数现有算法在实践中都很慢,并且它们的分析围绕到几乎静止点的收敛。我们考虑利用Polyak-\ L Ojasiewicz(PL)条件来设计更快的随机算法,具有更强的收敛保证。尽管已经用于设计许多随机最小化算法的PL条件,但它们对非凸敏最大优化的应用仍然罕见。在本文中,我们提出并分析了基于近端的跨越时代的方法的通用框架,许多众所周知的随机更新嵌入。以{\ BF原始物镜差和二元间隙}的方式建立快速收敛。与现有研究相比,(i)我们的分析基于一个新的Lyapunov函数,包括原始物理差距和正则化功能的二元间隙,(ii)结果更加全面,提高了更好的依赖性的速率不同假设下的条件号。我们还开展深层和非深度学习实验,以验证我们的方法的有效性。
translated by 谷歌翻译
在本文中,我们提出了一种针对SGD轨迹的新覆盖技术。该定位提供了一种算法特异性的复杂性,该复杂性通过覆盖数来衡量,与标准均匀覆盖的参数相比,该范围独立于维度的基数,从而导致指数尺寸依赖性。基于这种本地化结构,我们表明,如果目标函数是分段的有限扰动,则用$ p $零件强烈凸出和光滑的功能,即非convex和非平滑词,则概括性误差可以由上限。 $ o(\ sqrt {(\ log n \ log(np))/n})$,其中$ n $是数据示例的数量。特别是,此速率与维度无关,并且不需要尽早停止和衰减的步骤。最后,我们在各种环境中采用这些结果,并为多级线性模型,多级支持向量机和$ k $ - 均值聚类用于硬和软标签设置,并改善已知的最先进的范围,从而改善了已知的最先进的, - 阿尔特费率。
translated by 谷歌翻译
随机多变最小化 - 最小化(SMM)是大多数变化最小化的经典原则的在线延伸,这包括采样I.I.D。来自固定数据分布的数据点,并最小化递归定义的主函数的主要替代。在本文中,我们引入了随机块大大化 - 最小化,其中替代品现在只能块多凸,在半径递减内的时间优化单个块。在SMM中的代理人放松标准的强大凸起要求,我们的框架在内提供了更广泛的适用性,包括在线CANDECOMP / PARAFAC(CP)字典学习,并且尤其是当问题尺寸大时产生更大的计算效率。我们对所提出的算法提供广泛的收敛性分析,我们在可能的数据流下派生,放松标准i.i.d。对数据样本的假设。我们表明,所提出的算法几乎肯定会收敛于速率$ O((\ log n)^ {1+ \ eps} / n ^ {1/2})$的约束下的非凸起物镜的静止点集合。实证丢失函数和$ O((\ log n)^ {1+ \ eps} / n ^ {1/4})$的预期丢失函数,其中$ n $表示处理的数据样本数。在一些额外的假设下,后一趋同率可以提高到$ o((\ log n)^ {1+ \ eps} / n ^ {1/2})$。我们的结果为一般马尔维亚数据设置提供了各种在线矩阵和张量分解算法的第一融合率界限。
translated by 谷歌翻译
We show that parametric models trained by a stochastic gradient method (SGM) with few iterations have vanishing generalization error. We prove our results by arguing that SGM is algorithmically stable in the sense of Bousquet and Elisseeff. Our analysis only employs elementary tools from convex and continuous optimization. We derive stability bounds for both convex and non-convex optimization under standard Lipschitz and smoothness assumptions.Applying our results to the convex case, we provide new insights for why multiple epochs of stochastic gradient methods generalize well in practice. In the non-convex case, we give a new interpretation of common practices in neural networks, and formally show that popular techniques for training large deep models are indeed stability-promoting. Our findings conceptually underscore the importance of reducing training time beyond its obvious benefit.
translated by 谷歌翻译
To date, no "information-theoretic" frameworks for reasoning about generalization error have been shown to establish minimax rates for gradient descent in the setting of stochastic convex optimization. In this work, we consider the prospect of establishing such rates via several existing information-theoretic frameworks: input-output mutual information bounds, conditional mutual information bounds and variants, PAC-Bayes bounds, and recent conditional variants thereof. We prove that none of these bounds are able to establish minimax rates. We then consider a common tactic employed in studying gradient methods, whereby the final iterate is corrupted by Gaussian noise, producing a noisy "surrogate" algorithm. We prove that minimax rates cannot be established via the analysis of such surrogates. Our results suggest that new ideas are required to analyze gradient descent using information-theoretic techniques.
translated by 谷歌翻译
我们研究随机梯度下降(SGD)在多大程度上被理解为“常规”学习规则,该规则通过获得良好的培训数据来实现概括性能。我们考虑基本的随机凸优化框架,其中(一通道,无需替代)SGD在经典上是众所周知的,可以最大程度地降低人口风险,以$ o(1/\ sqrt n)$ $ O(1/\ sqrt n)$,并且出人意料地证明,存在问题实例SGD解决方案既表现出$ \ omega(1)$的经验风险和概括差距。因此,事实证明,从任何意义上讲,SGD在算法上都不是稳定的,并且其概括能力不能通过均匀的收敛性或任何其他当前已知的概括性结合技术来解释(除了其经典分析外)。然后,我们继续分析与替代SGD密切相关的相关性,为此我们表明不会发生类似现象,并证明其人口风险实际上确实以最佳速度融合。最后,我们在没有替换SGD的背景下解释了我们的主要结果,用于有限的和凸优化问题,并得出多上类别制度的上限和下限,从而在先前已知的结果上有了显着改善。
translated by 谷歌翻译
在本文中,我们研究了非平滑凸函数的私人优化问题$ f(x)= \ mathbb {e} _i f_i(x)$ on $ \ mathbb {r}^d $。我们表明,通过将$ \ ell_2^2 $正规器添加到$ f(x)$并从$ \ pi(x)\ propto \ exp(-k(f(x)+\ mu \ \ | | x \ | _2^2/2))$恢复已知的最佳经验风险和$(\ epsilon,\ delta)$ - dp的已知最佳经验风险和人口损失。此外,我们将展示如何使用$ \ widetilde {o}(n \ min(d,n))$ QUERIES $ QUERIES $ f_i(x)$用于DP-SCO,其中$ n $是示例数/用户和$ d $是环境维度。我们还在评估查询的数量上给出了一个(几乎)匹配的下限$ \ widetilde {\ omega}(n \ min(d,n))$。我们的结果利用以下具有独立感兴趣的工具:(1)如果损失函数强烈凸出并且扰动是Lipschitz,则证明指数机制的高斯差异隐私(GDP)。我们的隐私约束是\ emph {optimal},因为它包括高斯机制的隐私性,并使用等仪不等式证明了强烈的对数concove措施。 (2)我们展示如何从$ \ exp(-f(x) - \ mu \ | x \ | |^2_2/2)$ g $ -lipschitz $ f $带有$ \ eta $的总变化中的错误(电视)使用$ \ widetilde {o}((g^2/\ mu)\ log^2(d/\ eta))$无偏查询到$ f(x)$。这是第一个在dimension $ d $和精度$ \ eta $上具有\ emph {polylogarithmic依赖的查询复杂性的采样器。
translated by 谷歌翻译
FEDPROX算法是一种简单但功能强大的分布式近端优化方法,广泛用于联合学习(FL)而不是异质数据。尽管在实践中看到了它的知名度和杰出的成功,但对FEDPROX的理论理解在很大程度上是不足的:FedProx的吸引人的融合行为迄今在某些非标准和不切实际的地方功能的差异假设下的特征是,结果的优化仅限于优化的限制。问题。为了解决这些缺陷,我们通过算法稳定性的镜头开发了FedProx及其Minibatch随机扩展的新型局部差异不变理论。结果,我们有助于得出对FedProx的几个新的和更深入的见解,以实现联合优化的非凸面,包括:1)收敛确保独立于局部差异类型条件; 2)融合保证非平滑FL问题; 3)关于Minibatch的尺寸和采样设备的数量,线性加速。我们的理论首次揭示了局部差异和平稳性对于FedProx获得有利的复杂性界限并不是必备的。据报道,一系列基准FL数据集的初步实验结果证明了小型匹配以提高FEDPROX的样品效率的好处。
translated by 谷歌翻译
在插值方面,我们为平滑损失(可能是非lipschitz,可能是非convex)提供了急剧依赖路径依赖的概括和多余的风险保证。我们分析的核心是确定性对称算法绑定的新的概括误差,这意味着平均输出稳定性和终止时有界的预期优化误差导致概括。该结果表明,沿着优化路径发生小的概括误差,并使我们能够绕过Lipschitz或以前作品中普遍存在的损失的假设。对于非convex,polyak-lojasiewicz(PL),凸面和强烈凸丢失,我们在累积的路径依赖性优化误差,终端优化误差,样本数量和迭代数方面显示了概括误差的明确依赖性。 For nonconvex smooth losses, we prove that full-batch GD efficiently generalizes close to any stationary point at termination, under the proper choice of a decreasing step size.此外,如果损失是非convex但目标是PL,我们将在概括误差和相应的多余风险上四次消失,以选择大型常数步长大小。对于(分别 - 强 - )凸平的平滑损失,我们证明,全批GD还概括了较大的恒定步骤尺寸,并且在快速训练的同时,(分别是四次)的多余风险。在所有情况下,我们通过显示匹配的概括和优化错误率来缩小概括误差差距。当损失平稳时(但可能是非lipschitz)时,我们的全批GD概括误差和多余的风险界限严格比(随机)GD的现有范围更紧密。
translated by 谷歌翻译