Traditional weather forecasting relies on domain expertise and computationally intensive numerical simulation systems. Recently, with the development of a data-driven approach, weather forecasting based on deep learning has been receiving attention. Deep learning-based weather forecasting has made stunning progress, from various backbone studies using CNN, RNN, and Transformer to training strategies using weather observations datasets with auxiliary inputs. All of this progress has contributed to the field of weather forecasting; however, many elements and complex structures of deep learning models prevent us from reaching physical interpretations. This paper proposes a SImple baseline with a spatiotemporal context Aggregation Network (SIANet) that achieved state-of-the-art in 4 parts of 5 benchmarks of W4C22. This simple but efficient structure uses only satellite images and CNNs in an end-to-end fashion without using a multi-model ensemble or fine-tuning. This simplicity of SIANet can be used as a solid baseline that can be easily applied in weather forecasting using deep learning.
translated by 谷歌翻译
Deep learning-based weather prediction models have advanced significantly in recent years. However, data-driven models based on deep learning are difficult to apply to real-world applications because they are vulnerable to spatial-temporal shifts. A weather prediction task is especially susceptible to spatial-temporal shifts when the model is overfitted to locality and seasonality. In this paper, we propose a training strategy to make the weather prediction model robust to spatial-temporal shifts. We first analyze the effect of hyperparameters and augmentations of the existing training strategy on the spatial-temporal shift robustness of the model. Next, we propose an optimal combination of hyperparameters and augmentation based on the analysis results and a test-time augmentation. We performed all experiments on the W4C22 Transfer dataset and achieved the 1st performance.
translated by 谷歌翻译
Accurate and timely rain prediction is crucial for decision making and is also a challenging task. This paper presents a solution which won the 2 nd prize in the Weather4cast 2022 NeurIPS competition using 3D U-Nets and EarthFormers for 8-hour probabilistic rain prediction based on multi-band satellite images. The spatial context effect of the input satellite image has been deeply explored and optimal context range has been found. Based on the imbalanced rain distribution, we trained multiple models with different loss functions. To further improve the model performance, multi-model ensemble and threshold optimization were used to produce the final probabilistic rain prediction. Experiment results and leaderboard scores demonstrate that optimal spatial context, combined loss function, multi-model ensemble, and threshold optimization all provide modest model gain. A permutation test was used to analyze the effect of each satellite band on rain prediction, and results show that satellite bands signifying cloudtop phase (8.7 um) and cloud-top height (10.8 and 13.4 um) are the best predictors for rain prediction. The source code is available at https://github.com/bugsuse/weather4cast-2022-stage2.
translated by 谷歌翻译
This paper presents a solution to the Weather4cast 2022 Challenge Stage 2. The goal of the challenge is to forecast future high-resolution rainfall events obtained from ground radar using low-resolution multiband satellite images. We suggest a solution that performs data preprocessing appropriate to the challenge and then predicts rainfall movies using a novel RainUNet. RainUNet is a hierarchical U-shaped network with temporal-wise separable block (TS block) using a decoupled large kernel 3D convolution to improve the prediction performance. Various evaluation metrics show that our solution is effective compared to the baseline method. The source codes are available at https://github.com/jinyxp/Weather4cast-2022
translated by 谷歌翻译
由于其对人类生命,运输,粮食生产和能源管理的高度影响,因此在科学上研究了预测天气的问题。目前的运营预测模型基于物理学,并使用超级计算机来模拟大气预测,提前预测数小时和日期。更好的基于物理的预测需要改进模型本身,这可能是一个实质性的科学挑战,以及潜在的分辨率的改进,可以计算令人望而却步。基于神经网络的新出现的天气模型代表天气预报的范式转变:模型学习来自数据的所需变换,而不是依赖于手工编码的物理,并计算效率。然而,对于神经模型,每个额外的辐射时间都会构成大量挑战,因为它需要捕获更大的空间环境并增加预测的不确定性。在这项工作中,我们提出了一个神经网络,能够提前十二小时的大规模降水预测,并且从相同的大气状态开始,该模型能够比最先进的基于物理的模型更高的技能HRRR和HREF目前在美国大陆运营。可解释性分析加强了模型学会模拟先进物理原则的观察。这些结果代表了建立与神经网络有效预测的新范式的实质性步骤。
translated by 谷歌翻译
降水预测是一项重要的科学挑战,对社会产生广泛影响。从历史上看,这项挑战是使用数值天气预测(NWP)模型解决的,该模型基于基于物理的模拟。最近,许多作品提出了一种替代方法,使用端到端深度学习(DL)模型来替代基于物理的NWP。尽管这些DL方法显示出提高的性能和计算效率,但它们在长期预测中表现出局限性,并且缺乏NWP模型的解释性。在这项工作中,我们提出了一个混合NWP-DL工作流程,以填补独立NWP和DL方法之间的空白。在此工作流程下,NWP输出被馈入深层模型,该模型后处理数据以产生精致的降水预测。使用自动气象站(AWS)观测值作为地面真相标签,对深层模型进行了监督训练。这可以实现两全其美,甚至可以从NWP技术的未来改进中受益。为了促进朝这个方向进行研究,我们提出了一个专注于朝鲜半岛的新型数据集,该数据集称为KOMET(KOMEN(KOREA气象数据集),由NWP预测和AWS观察组成。对于NWP,我们使用全局数据同化和预测系统-KOREA集成模型(GDAPS-KIM)。
translated by 谷歌翻译
The short-term prediction of precipitation is critical in many areas of life. Recently, a large body of work was devoted to forecasting radar reflectivity images. The radar images are available only in areas with ground weather radars. Thus, we aim to predict high-resolution precipitation from lower-resolution satellite radiance images. A neural network called WeatherFusionNet is employed to predict severe rain up to eight hours in advance. WeatherFusionNet is a U-Net architecture that fuses three different ways to process the satellite data; predicting future satellite frames, extracting rain information from the current frames, and using the input sequence directly. Using the presented method, we achieved 1st place in the NeurIPS 2022 Weather4Cast Core challenge. The code and trained parameters are available at \url{https://github.com/Datalab-FIT-CTU/weather4cast-2022}.
translated by 谷歌翻译
Accurately forecasting the weather is an important task, as many real-world processes and decisions depend on future meteorological conditions. The NeurIPS 2022 challenge entitled Weather4cast poses the problem of predicting rainfall events for the next eight hours given the preceding hour of satellite observations as a context. Motivated by the recent success of transformer-based architectures in computer vision, we implement and propose two methodologies based on this architecture to tackle this challenge. We find that ensembling different transformers with some baseline models achieves the best performance we could measure on the unseen test data. Our approach has been ranked 3rd in the competition.
translated by 谷歌翻译
提出了一个深度学习模型,以便在未来60分钟的五分钟时间分辨率下以闪电的形式出现。该模型基于反复横向的结构,该结构使其能够识别并预测对流的时空发展,包括雷暴细胞的运动,生长和衰变。预测是在固定网格上执行的,而无需使用风暴对象检测和跟踪。从瑞士和周围的区域收集的输入数据包括地面雷达数据,可见/红外卫星数据以及衍生的云产品,闪电检测,数值天气预测和数字高程模型数据。我们分析了不同的替代损失功能,班级加权策略和模型特征,为将来的研究提供了指南,以最佳地选择损失功能,并正确校准其模型的概率预测。基于这些分析,我们在这项研究中使用焦点损失,但得出结论,它仅在交叉熵方面提供了较小的好处,如果模型的重新校准不实用,这是一个可行的选择。该模型在60分钟的现有周期内实现了0.45的像素临界成功指数(CSI)为0.45,以预测8 km的闪电发生,范围从5分钟的CSI到5分钟的提前时间到CSI到CSI的0.32在A处。收货时间60分钟。
translated by 谷歌翻译
The goal of precipitation nowcasting is to predict the future rainfall intensity in a local region over a relatively short period of time. Very few previous studies have examined this crucial and challenging weather forecasting problem from the machine learning perspective. In this paper, we formulate precipitation nowcasting as a spatiotemporal sequence forecasting problem in which both the input and the prediction target are spatiotemporal sequences. By extending the fully connected LSTM (FC-LSTM) to have convolutional structures in both the input-to-state and state-to-state transitions, we propose the convolutional LSTM (ConvLSTM) and use it to build an end-to-end trainable model for the precipitation nowcasting problem. Experiments show that our ConvLSTM network captures spatiotemporal correlations better and consistently outperforms FC-LSTM and the state-of-theart operational ROVER algorithm for precipitation nowcasting.
translated by 谷歌翻译
Forecasting the state of vegetation in response to climate and weather events is a major challenge. Its implementation will prove crucial in predicting crop yield, forest damage, or more generally the impact on ecosystems services relevant for socio-economic functioning, which if absent can lead to humanitarian disasters. Vegetation status depends on weather and environmental conditions that modulate complex ecological processes taking place at several timescales. Interactions between vegetation and different environmental drivers express responses at instantaneous but also time-lagged effects, often showing an emerging spatial context at landscape and regional scales. We formulate the land surface forecasting task as a strongly guided video prediction task where the objective is to forecast the vegetation developing at very fine resolution using topography and weather variables to guide the prediction. We use a Convolutional LSTM (ConvLSTM) architecture to address this task and predict changes in the vegetation state in Africa using Sentinel-2 satellite NDVI, having ERA5 weather reanalysis, SMAP satellite measurements, and topography (DEM of SRTMv4.1) as variables to guide the prediction. Ours results highlight how ConvLSTM models can not only forecast the seasonal evolution of NDVI at high resolution, but also the differential impacts of weather anomalies over the baselines. The model is able to predict different vegetation types, even those with very high NDVI variability during target length, which is promising to support anticipatory actions in the context of drought-related disasters.
translated by 谷歌翻译
The Weather4Cast competition (hosted by NeurIPS 2022) required competitors to predict super-resolution rain movies in various regions of Europe when low-resolution satellite contexts covering wider regions are given. In this paper, we show that a general baseline 3D U-Net can be significantly improved with region-conditioned layers as well as orthogonality regularizations on 1x1x1 convolutional layers. Additionally, we facilitate the generalization with a bag of training strategies: mixup data augmentation, self-distillation, and feature-wise linear modulation (FiLM). Presented modifications outperform the baseline algorithms (3D U-Net) by up to 19.54% with less than 1% additional parameters, which won the 4th place in the core test leaderboard.
translated by 谷歌翻译
太阳能现在是历史上最便宜的电力形式。不幸的是,由于其变异性,显着提高栅格的太阳能的一部分仍然具有挑战性,这使得电力的供需平衡更加困难。虽然热发电机坡度 - 它们可以改变输出的最高速率 - 是有限的,太阳能的坡度基本上是无限的。因此,准确的近期太阳能预测或垂圈,对于提供预警来调整热发电机输出,以响应于太阳能变化来调整热发电机,以确保平衡供需。为了解决问题,本文开发了使用自我监督学习的丰富和易于使用的多光谱卫星数据的太阳能垂圈的一般模型。具体而言,我们使用卷积神经网络(CNN)和长短期内存网络(LSTM)开发深度自动回归模型,这些模型在多个位置训练全球培训,以预测最近推出的最近收集的时空数据的未来观察-R系列卫星。我们的模型估计了基于卫星观测的未来的太阳辐照度,我们向较小的场地特定的太阳能数据培训的回归模型提供,以提供近期太阳能光伏(PV)预测,其考虑了现场特征的特征。我们评估了我们在25个太阳能场所的不同覆盖区域和预测视野的方法,并表明我们的方法利用地面真理观察结果产生靠近模型的错误。
translated by 谷歌翻译
我们介绍了Encoder-Forecaster卷积的长短短期记忆(LSTM)深度学习模型,为微软天气的运营降水Newcasting产品提供动力。该模型作为输入一系列天气雷达马赛克,并确定在最多6小时内的铅倍时确定未来雷达反射率。通过沿着特征维度堆叠大型输入接收领域,并通过从基于物理的高分辨率快速刷新(HRRR)模型的预测,通过预测来调节模型的预测,我们能够在多个度量标准上以20-25%的光流和HRRR基线优于光流量和HRRR基线平均在所有交货时间上。
translated by 谷歌翻译
将间歇性可再生能源集成到大量的电网中是具有挑战性的。旨在解决这一困难的建立良好的方法涉及即将到来的能源供应可变性以适应电网的响应。在太阳能中,可以在全天空摄像机(前方30分钟)和卫星观测(提前6小时)的不同时间尺度上预测由遮挡云引起的短期变化。在这项研究中,我们将这两种互补的观点集成到单个机器学习框架中的云覆盖物上,以改善时间内(最高60分钟)的辐照度预测。确定性和概率预测均在不同的天气条件(晴朗,多云,阴天)以及不同的输入配置(天空图像,卫星观测和/或过去的辐照度值)中进行评估。我们的结果表明,混合模型在晴朗的条件下有益于预测,并改善了长期预测。这项研究为将来的新颖方法奠定了基础,即在单个学习框架中将天空图像和卫星观测结合起来,以推动太阳现象。
translated by 谷歌翻译
能量供应和需求受到气象条件的影响。随着对可再生能源的需求增加,精确天气预报的相关性增加。能源提供者和决策者要求天气信息进行明智的选择,并根据业务目标建立最佳计划。由于最近应用于卫星图像的深度学习技术,使用遥感数据的天气预报也是主要进步的主题。本文通过基于U-Net的架构调查了荷兰沿海海洋元素的多个步骤框架预测。来自哥白尼观察计划的每小时数据在2年内跨过跨越2年的时间,用于培训模型并进行预测,包括季节性预测。我们提出了U-Net架构的变化,并使用剩余连接,并行卷积和不对称卷积进一步扩展了这一新颖模型,以便引入三种额外的架构。特别是,我们表明,配备有平行和不对称卷积的架构以及跳过连接优于其他三个讨论的模型。
translated by 谷歌翻译
天气预报在人类日常生活的多个方面起着重要作用。目前,基于物理的数值天气预报用于预测天气,并且需要大量的计算资源。近年来,基于深度学习的模型在许多天气预报相关任务中都有广泛的成功。在本文中,我们描述了我们的天气421攻击的实验,其中基于初始时空数据的初始一小时来预测8小时的时空天气数据。我们专注于SMAAT-UNET,一个高效的U-Net基于AutoEncoder。通过这种型号,我们可以获得优异的结果,同时保持低计算资源。此外,在纸张结束时讨论了几种方法和可能的未来工作。
translated by 谷歌翻译
尽管有持续的改进,但降水预测仍然没有其他气象变量的准确和可靠。造成这种情况的一个主要因素是,几个影响降水分布和强度的关键过程出现在全球天气模型的解决规模以下。计算机视觉社区已经证明了生成的对抗网络(GAN)在超分辨率问题上取得了成功,即学习为粗图像添加精细的结构。 Leinonen等。 (2020年)先前使用GAN来产生重建的高分辨率大气场的集合,并给定较粗糙的输入数据。在本文中,我们证明了这种方法可以扩展到更具挑战性的问题,即通过使用高分辨率雷达测量值作为“地面真相”来提高天气预报模型中相对低分辨率输入的准确性和分辨率。神经网络必须学会添加分辨率和结构,同时考虑不可忽略的预测错误。我们表明,甘斯和vae-gan可以在创建高分辨率的空间相干降水图的同时,可以匹配最新的后处理方法的统计特性。我们的模型比较比较与像素和合并的CRP分数,功率谱信息和等级直方图(用于评估校准)的最佳现有缩减方法。我们测试了我们的模型,并表明它们在各种场景中的表现,包括大雨。
translated by 谷歌翻译
卫星图像时间序列中的大量差距通常会使深度学习模型(例如卷积神经网络用于时空建模)的应用变得复杂。基于计算机视觉介绍的先前工作,本文显示了如何将三维时空部分卷积用作神经网络中的层来填补卫星图像时间序列中的空白。为了评估该方法,我们在Sentinel-5p卫星的准全球碳一氧化碳观测值的不完整图像时间序列上应用类似U-NET的模型。预测误差可与两种考虑的统计方法相媲美,而预测的计算时间最多要快三个数量级,这使得该方法适用于处理大量卫星数据。可以将部分卷积添加到其他类型的神经网络中,从而使与现有深度学习模型集成相对容易。但是,该方法没有量化预测错误,需要进一步的研究来理解和提高模型可传递性。时空部分卷积的实施和U-NET型模型可作为开源软件可用。
translated by 谷歌翻译
地球天文台是一个不断增长的研究领域,可以在短时间预测(即现在的情况下)利用AI的力量。在这项工作中,我们使用视频变压器网络应对天气预报的挑战。视觉变压器体系结构已在各种应用中进行了探索,主要限制是注意力的计算复杂性和饥饿的培训。为了解决这些问题,我们建议使用视频Swin-Transformer,再加上专用的增强计划。此外,我们在编码器侧采用逐渐的空间减少,并在解码器上进行了交叉注意。在Weather4cast2021天气预报挑战数据中测试了建议的方法,该数据需要从每小时的天气产品序列预测未来的8小时(每小时4个小时)。将数据集归一化为0-1,以促进使用不同数据集的评估指标。该模型在提供训练数据时会导致MSE得分为0.4750,在不使用培训数据的情况下转移学习过程中为0.4420。
translated by 谷歌翻译