我们介绍了Encoder-Forecaster卷积的长短短期记忆(LSTM)深度学习模型,为微软天气的运营降水Newcasting产品提供动力。该模型作为输入一系列天气雷达马赛克,并确定在最多6小时内的铅倍时确定未来雷达反射率。通过沿着特征维度堆叠大型输入接收领域,并通过从基于物理的高分辨率快速刷新(HRRR)模型的预测,通过预测来调节模型的预测,我们能够在多个度量标准上以20-25%的光流和HRRR基线优于光流量和HRRR基线平均在所有交货时间上。
translated by 谷歌翻译
由于其对人类生命,运输,粮食生产和能源管理的高度影响,因此在科学上研究了预测天气的问题。目前的运营预测模型基于物理学,并使用超级计算机来模拟大气预测,提前预测数小时和日期。更好的基于物理的预测需要改进模型本身,这可能是一个实质性的科学挑战,以及潜在的分辨率的改进,可以计算令人望而却步。基于神经网络的新出现的天气模型代表天气预报的范式转变:模型学习来自数据的所需变换,而不是依赖于手工编码的物理,并计算效率。然而,对于神经模型,每个额外的辐射时间都会构成大量挑战,因为它需要捕获更大的空间环境并增加预测的不确定性。在这项工作中,我们提出了一个神经网络,能够提前十二小时的大规模降水预测,并且从相同的大气状态开始,该模型能够比最先进的基于物理的模型更高的技能HRRR和HREF目前在美国大陆运营。可解释性分析加强了模型学会模拟先进物理原则的观察。这些结果代表了建立与神经网络有效预测的新范式的实质性步骤。
translated by 谷歌翻译
The goal of precipitation nowcasting is to predict the future rainfall intensity in a local region over a relatively short period of time. Very few previous studies have examined this crucial and challenging weather forecasting problem from the machine learning perspective. In this paper, we formulate precipitation nowcasting as a spatiotemporal sequence forecasting problem in which both the input and the prediction target are spatiotemporal sequences. By extending the fully connected LSTM (FC-LSTM) to have convolutional structures in both the input-to-state and state-to-state transitions, we propose the convolutional LSTM (ConvLSTM) and use it to build an end-to-end trainable model for the precipitation nowcasting problem. Experiments show that our ConvLSTM network captures spatiotemporal correlations better and consistently outperforms FC-LSTM and the state-of-theart operational ROVER algorithm for precipitation nowcasting.
translated by 谷歌翻译
提出了一个深度学习模型,以便在未来60分钟的五分钟时间分辨率下以闪电的形式出现。该模型基于反复横向的结构,该结构使其能够识别并预测对流的时空发展,包括雷暴细胞的运动,生长和衰变。预测是在固定网格上执行的,而无需使用风暴对象检测和跟踪。从瑞士和周围的区域收集的输入数据包括地面雷达数据,可见/红外卫星数据以及衍生的云产品,闪电检测,数值天气预测和数字高程模型数据。我们分析了不同的替代损失功能,班级加权策略和模型特征,为将来的研究提供了指南,以最佳地选择损失功能,并正确校准其模型的概率预测。基于这些分析,我们在这项研究中使用焦点损失,但得出结论,它仅在交叉熵方面提供了较小的好处,如果模型的重新校准不实用,这是一个可行的选择。该模型在60分钟的现有周期内实现了0.45的像素临界成功指数(CSI)为0.45,以预测8 km的闪电发生,范围从5分钟的CSI到5分钟的提前时间到CSI到CSI的0.32在A处。收货时间60分钟。
translated by 谷歌翻译
降水预测是一项重要的科学挑战,对社会产生广泛影响。从历史上看,这项挑战是使用数值天气预测(NWP)模型解决的,该模型基于基于物理的模拟。最近,许多作品提出了一种替代方法,使用端到端深度学习(DL)模型来替代基于物理的NWP。尽管这些DL方法显示出提高的性能和计算效率,但它们在长期预测中表现出局限性,并且缺乏NWP模型的解释性。在这项工作中,我们提出了一个混合NWP-DL工作流程,以填补独立NWP和DL方法之间的空白。在此工作流程下,NWP输出被馈入深层模型,该模型后处理数据以产生精致的降水预测。使用自动气象站(AWS)观测值作为地面真相标签,对深层模型进行了监督训练。这可以实现两全其美,甚至可以从NWP技术的未来改进中受益。为了促进朝这个方向进行研究,我们提出了一个专注于朝鲜半岛的新型数据集,该数据集称为KOMET(KOMEN(KOREA气象数据集),由NWP预测和AWS观察组成。对于NWP,我们使用全局数据同化和预测系统-KOREA集成模型(GDAPS-KIM)。
translated by 谷歌翻译
降雨数据的时间和空间分辨率对于环境建模研究至关重要,在环境建模研究中,其时空的变异性被视为主要因素。来自不同遥感仪器(例如雷达,卫星)的降雨产品具有不同的时空分辨率,因为它们的感应能力和后处理方法的差异。在这项研究中,我们开发了一种深度学习方法,以增加降雨数据,并增加时间分辨率,以补充相对较低的分辨率产品。我们提出了基于卷积神经网络(CNN)的神经网络体系结构,以改善基于雷达的降雨产品的时间分辨率,并将提出的模型与基于光流的插值方法和CNN基线模型进行比较。这项研究中提出的方法可用于增强降雨图,并以更好的时间分辨率和2D降雨图序列中缺失的框架进行插补,以支持水文和洪水预测研究。
translated by 谷歌翻译
太阳能现在是历史上最便宜的电力形式。不幸的是,由于其变异性,显着提高栅格的太阳能的一部分仍然具有挑战性,这使得电力的供需平衡更加困难。虽然热发电机坡度 - 它们可以改变输出的最高速率 - 是有限的,太阳能的坡度基本上是无限的。因此,准确的近期太阳能预测或垂圈,对于提供预警来调整热发电机输出,以响应于太阳能变化来调整热发电机,以确保平衡供需。为了解决问题,本文开发了使用自我监督学习的丰富和易于使用的多光谱卫星数据的太阳能垂圈的一般模型。具体而言,我们使用卷积神经网络(CNN)和长短期内存网络(LSTM)开发深度自动回归模型,这些模型在多个位置训练全球培训,以预测最近推出的最近收集的时空数据的未来观察-R系列卫星。我们的模型估计了基于卫星观测的未来的太阳辐照度,我们向较小的场地特定的太阳能数据培训的回归模型提供,以提供近期太阳能光伏(PV)预测,其考虑了现场特征的特征。我们评估了我们在25个太阳能场所的不同覆盖区域和预测视野的方法,并表明我们的方法利用地面真理观察结果产生靠近模型的错误。
translated by 谷歌翻译
Traditional weather forecasting relies on domain expertise and computationally intensive numerical simulation systems. Recently, with the development of a data-driven approach, weather forecasting based on deep learning has been receiving attention. Deep learning-based weather forecasting has made stunning progress, from various backbone studies using CNN, RNN, and Transformer to training strategies using weather observations datasets with auxiliary inputs. All of this progress has contributed to the field of weather forecasting; however, many elements and complex structures of deep learning models prevent us from reaching physical interpretations. This paper proposes a SImple baseline with a spatiotemporal context Aggregation Network (SIANet) that achieved state-of-the-art in 4 parts of 5 benchmarks of W4C22. This simple but efficient structure uses only satellite images and CNNs in an end-to-end fashion without using a multi-model ensemble or fine-tuning. This simplicity of SIANet can be used as a solid baseline that can be easily applied in weather forecasting using deep learning.
translated by 谷歌翻译
尽管有持续的改进,但降水预测仍然没有其他气象变量的准确和可靠。造成这种情况的一个主要因素是,几个影响降水分布和强度的关键过程出现在全球天气模型的解决规模以下。计算机视觉社区已经证明了生成的对抗网络(GAN)在超分辨率问题上取得了成功,即学习为粗图像添加精细的结构。 Leinonen等。 (2020年)先前使用GAN来产生重建的高分辨率大气场的集合,并给定较粗糙的输入数据。在本文中,我们证明了这种方法可以扩展到更具挑战性的问题,即通过使用高分辨率雷达测量值作为“地面真相”来提高天气预报模型中相对低分辨率输入的准确性和分辨率。神经网络必须学会添加分辨率和结构,同时考虑不可忽略的预测错误。我们表明,甘斯和vae-gan可以在创建高分辨率的空间相干降水图的同时,可以匹配最新的后处理方法的统计特性。我们的模型比较比较与像素和合并的CRP分数,功率谱信息和等级直方图(用于评估校准)的最佳现有缩减方法。我们测试了我们的模型,并表明它们在各种场景中的表现,包括大雨。
translated by 谷歌翻译
将间歇性可再生能源集成到大量的电网中是具有挑战性的。旨在解决这一困难的建立良好的方法涉及即将到来的能源供应可变性以适应电网的响应。在太阳能中,可以在全天空摄像机(前方30分钟)和卫星观测(提前6小时)的不同时间尺度上预测由遮挡云引起的短期变化。在这项研究中,我们将这两种互补的观点集成到单个机器学习框架中的云覆盖物上,以改善时间内(最高60分钟)的辐照度预测。确定性和概率预测均在不同的天气条件(晴朗,多云,阴天)以及不同的输入配置(天空图像,卫星观测和/或过去的辐照度值)中进行评估。我们的结果表明,混合模型在晴朗的条件下有益于预测,并改善了长期预测。这项研究为将来的新颖方法奠定了基础,即在单个学习框架中将天空图像和卫星观测结合起来,以推动太阳现象。
translated by 谷歌翻译
太阳能的高效整合到电力组合中取决于其间歇性的可靠预期。预测由云覆盖动态产生的太阳辐照度的时间变异的有希望的方法是基于地面天空图像或卫星图像序列的分析。尽管结果令人鼓舞,但现有深度学习方法的经常性限制在于对过去观察的反应而不是积极预期未来事件的无处不在的趋势。这导致频繁的时间滞后和有限的预测突发事件的能力。为了解决这一挑战,我们介绍了Eclipse,一种时空神经网络架构,即模型从天空图像模拟云运动,不仅预测未来的辐照水平,而且还可以在本地辐照度图上提供更丰富的信息。我们表明Eclipse预期关键事件,并在产生视觉上现实期货的同时降低时间延误。
translated by 谷歌翻译
从传统上讲,地球系统(例如天气和气候)的预测依赖于具有复杂物理模型的数值模拟,因此在计算中既昂贵又对领域专业知识的需求既昂贵。在过去十年中时空地球观察数据的爆炸性增长中,应用深度学习(DL)的数据驱动模型表明了各种地球系统预测任务的潜力。尽管在其他领域取得了广泛的成功,但作为新兴DL架构的变压器在该领域的采用量有限。在本文中,我们提出了Earthformer,这是一种用于地球系统预测的时空变压器。 Earthformer基于一个通用,灵活和有效的时空注意块,名为Cuboid的注意力。这个想法是将数据分解为立方体,并平行应用立方体级别的自我注意力。这些立方体与全球矢量的集合进一步相关。我们对MovingMnist数据集和新提出的混沌N体MNIST数据集进行了实验,以验证Cuboid注意的有效性,并找出地球形式的最佳设计。关于降水现象和El Nino/Southern振荡(ENSO)预测的两个现实基准测试的实验表明,Earthformer实现了最新的性能。
translated by 谷歌翻译
时空预测学习是通过历史先验知识来预测未来的框架变化。以前的工作通过使网络更广泛和更深入来改善性能,但这也带来了巨大的内存开销,这严重阻碍了技术的开发和应用。比例是提高普通计算机视觉任务中模型性能的另一个维度,这可以减少计算要求并更好地感知环境。最近的RNN模型尚未考虑和探索如此重要的维度。在本文中,我们从多尺度的好处中学习,我们提出了一个名为多尺度RNN(MS-RNN)的通用框架,以增强最近的RNN模型。我们通过在4个不同的数据集上使用6种流行的RNN模型(Convlstm,Trajgru,Predrnn,Prodrnn ++,MIM和MotionRNN)进行详尽的实验来验证MS-RNN框架。结果表明,将RNN模型纳入我们的框架的效率低得多,但性能比以前更好。我们的代码在\ url {https://github.com/mazhf/ms-rnn}上发布。
translated by 谷歌翻译
熟练的水流预测可以为水政策和管理各个领域的决策提供信息。我们集成了数值天气预测集合和分布式水文模型,以在中范围的交货时间(1-7天)下生成集合流量预测。我们展示了一项用于在美国东部的Susquehanna河流盆地的后处理过程中进行机器学习应用的案例研究。为了进行预测验证,我们使用不同的指标,例如技能得分和可靠性图,以提前时间,流量阈值和季节为条件。验证结果表明,机器学习后处理器可以改善相对于低复杂性预测(例如气候和时间持久性)以及确定性和原始集合预测的水流预测。与原始合奏相比,与较短的交货时间相比,在中等时间表的相对增益在后期时间表通常更高。与低压流相比,高流量和与凉爽的流量相比。总体而言,我们的结果突出了机器学习在许多方面的好处,以提高流量预测的技能和可靠性。
translated by 谷歌翻译
本文描述了一个新颖的机器学习(ML)框架,用于热带气旋强度和轨道预测,结合了多种ML技术并利用了多种数据源。我们的多模式框架(称为Hurricast)有效地结合了时空数据和统计数据,通过提取具有深度学习的编码器编码器体系结构的特征,并通过梯度增强的树进行预测。我们在2016 - 2019年在北大西洋和东太平洋盆地进行了24小时的提前时间和强度预测,评估我们的模型,并表明它们在秒内计算时达到了当前操作预测模型的可比平均绝对误差和技能。此外,将飓风纳入运营预测的共识模型可以改善国家飓风中心的官方预测,从而通过现有方法突出显示互补物业。总而言之,我们的工作表明,利用机器学习技术结合不同的数据源可以带来热带气旋预测的新机会。
translated by 谷歌翻译
谷歌的运营洪水预测系统是制定的,为机构和公众提供准确的实时洪水警告,重点是河流洪水在大型潮流的河流中。它在2018年开始运作,自从地理位置扩展以来。该预测系统由四个子系统组成:数据验证,阶段预测,淹没建模和警报分配。机器学习用于两个子系统。阶段预测采用长短期内存(LSTM)网络和线性模型进行建模。使用阈值和歧管模型计算洪水淹没,前者计算淹没程度,后者计算淹没程度和深度。本文首次提供的歧管模型提供了一种机器学习替代洪水淹没的液压建模。在评估历史数据时,所有型号都可以实现可操作使用的足够高的度量指标。 LSTM表现出比线性模型更高的技能,而阈值和歧管模型达到了类似的性能度量,以便在淹没程度上进行建模。在2021年的季风季节期间,洪水预警系统在印度和孟加拉国运营,覆盖河流的洪水区,总面积287,000平方公里,拥有350多万人。超过100米的洪水警报被发送给受影响的人口,相关当局以及紧急组织。系统上的当前和未来的工作包括将覆盖范围扩展到额外的洪水易发位置,以及提高建模能力和准确性。
translated by 谷歌翻译
我们基准了一个简单学习模型的亚季节预测工具包,该工具包优于操作实践和最先进的机器学习和深度学习方法。这些模型,由Mouatadid等人引入。 (2022),包括(a)气候++,这是气候学的一种适应性替代品,对于降水而言,准确性9%,比美国运营气候预测系统(CFSV2)高9%,熟练250%; (b)CFSV2 ++,一种学习的CFSV2校正,可将温度和降水精度提高7-8%,技能提高50-275%; (c)持久性++是一种增强的持久性模型,将CFSV2预测与滞后测量相结合,以将温度和降水精度提高6-9%,技能提高40-130%。在整个美国,气候++,CFSV2 ++和持久性++工具包始终优于标准气象基准,最先进的机器和深度学习方法,以及欧洲中等范围的天气预报集合中心。
translated by 谷歌翻译
能量供应和需求受到气象条件的影响。随着对可再生能源的需求增加,精确天气预报的相关性增加。能源提供者和决策者要求天气信息进行明智的选择,并根据业务目标建立最佳计划。由于最近应用于卫星图像的深度学习技术,使用遥感数据的天气预报也是主要进步的主题。本文通过基于U-Net的架构调查了荷兰沿海海洋元素的多个步骤框架预测。来自哥白尼观察计划的每小时数据在2年内跨过跨越2年的时间,用于培训模型并进行预测,包括季节性预测。我们提出了U-Net架构的变化,并使用剩余连接,并行卷积和不对称卷积进一步扩展了这一新颖模型,以便引入三种额外的架构。特别是,我们表明,配备有平行和不对称卷积的架构以及跳过连接优于其他三个讨论的模型。
translated by 谷歌翻译
Accurate and timely rain prediction is crucial for decision making and is also a challenging task. This paper presents a solution which won the 2 nd prize in the Weather4cast 2022 NeurIPS competition using 3D U-Nets and EarthFormers for 8-hour probabilistic rain prediction based on multi-band satellite images. The spatial context effect of the input satellite image has been deeply explored and optimal context range has been found. Based on the imbalanced rain distribution, we trained multiple models with different loss functions. To further improve the model performance, multi-model ensemble and threshold optimization were used to produce the final probabilistic rain prediction. Experiment results and leaderboard scores demonstrate that optimal spatial context, combined loss function, multi-model ensemble, and threshold optimization all provide modest model gain. A permutation test was used to analyze the effect of each satellite band on rain prediction, and results show that satellite bands signifying cloudtop phase (8.7 um) and cloud-top height (10.8 and 13.4 um) are the best predictors for rain prediction. The source code is available at https://github.com/bugsuse/weather4cast-2022-stage2.
translated by 谷歌翻译
降雨事件的遥感对于运营和科学需求至关重要,包括天气预报,极端洪水,水循环监测等。降水量的降水量。然而,这种雷达的观察范围仅限于几百公里,促使对其他遥感方法的探索,在开阔的海洋上,这代表了不被陆基雷达覆盖的大面积。几十年来,众所周知,诸如Sentinel-1图像之类的C波段SAR图像在海面上表现出降雨签名。但是,SAR来源的降雨产品的开发仍然是一个挑战。在这里,我们提出了一种深度学习方法,以从SAR图像中提取降雨信息。我们证明,在接触和预处理的Sentinel-1/Nexrad数据集中训练的卷积神经网络,例如U-NET,显然优于最先进的过滤方案。我们的结果表明,在分割降水状态下的性能高,由1、3和10 mm/h的阈值描绘。与当前依靠Koch过滤器绘制二进制降雨图的方法相比,这些基于多阈值的模型可以为更高的风速提供降雨估计,因此对于数据同化天气预测或提高SAR的资格可能引起了极大的兴趣 - 衍生的风场数据。
translated by 谷歌翻译