从传统上讲,地球系统(例如天气和气候)的预测依赖于具有复杂物理模型的数值模拟,因此在计算中既昂贵又对领域专业知识的需求既昂贵。在过去十年中时空地球观察数据的爆炸性增长中,应用深度学习(DL)的数据驱动模型表明了各种地球系统预测任务的潜力。尽管在其他领域取得了广泛的成功,但作为新兴DL架构的变压器在该领域的采用量有限。在本文中,我们提出了Earthformer,这是一种用于地球系统预测的时空变压器。 Earthformer基于一个通用,灵活和有效的时空注意块,名为Cuboid的注意力。这个想法是将数据分解为立方体,并平行应用立方体级别的自我注意力。这些立方体与全球矢量的集合进一步相关。我们对MovingMnist数据集和新提出的混沌N体MNIST数据集进行了实验,以验证Cuboid注意的有效性,并找出地球形式的最佳设计。关于降水现象和El Nino/Southern振荡(ENSO)预测的两个现实基准测试的实验表明,Earthformer实现了最新的性能。
translated by 谷歌翻译
Video prediction is a challenging computer vision task that has a wide range of applications. In this work, we present a new family of Transformer-based models for video prediction. Firstly, an efficient local spatial-temporal separation attention mechanism is proposed to reduce the complexity of standard Transformers. Then, a full autoregressive model, a partial autoregressive model and a non-autoregressive model are developed based on the new efficient Transformer. The partial autoregressive model has a similar performance with the full autoregressive model but a faster inference speed. The non-autoregressive model not only achieves a faster inference speed but also mitigates the quality degradation problem of the autoregressive counterparts, but it requires additional parameters and loss function for learning. Given the same attention mechanism, we conducted a comprehensive study to compare the proposed three video prediction variants. Experiments show that the proposed video prediction models are competitive with more complex state-of-the-art convolutional-LSTM based models. The source code is available at https://github.com/XiYe20/VPTR.
translated by 谷歌翻译
从CNN,RNN到VIT,我们见证了视频预测中的显着进步,结合了辅助输入,精心设计的神经体系结构和复杂的培训策略。我们钦佩这些进步,但对必要性感到困惑:是否有一种可以表现得很好的简单方法?本文提出了SIMVP,这是一个简单的视频预测模型,完全建立在CNN上,并以端到端的方式受到MSE损失的训练。在不引入任何其他技巧和复杂策略的情况下,我们可以在五个基准数据集上实现最先进的性能。通过扩展实验,我们证明了SIMVP在现实世界数据集上具有强大的概括和可扩展性。培训成本的显着降低使扩展到复杂方案变得更加容易。我们认为SIMVP可以作为刺激视频预测进一步发展的坚实基线。该代码可在\ href {https://github.com/gaozhangyang/simvp-simpler-yet-better-video-prediction} {github}中获得。
translated by 谷歌翻译
The goal of precipitation nowcasting is to predict the future rainfall intensity in a local region over a relatively short period of time. Very few previous studies have examined this crucial and challenging weather forecasting problem from the machine learning perspective. In this paper, we formulate precipitation nowcasting as a spatiotemporal sequence forecasting problem in which both the input and the prediction target are spatiotemporal sequences. By extending the fully connected LSTM (FC-LSTM) to have convolutional structures in both the input-to-state and state-to-state transitions, we propose the convolutional LSTM (ConvLSTM) and use it to build an end-to-end trainable model for the precipitation nowcasting problem. Experiments show that our ConvLSTM network captures spatiotemporal correlations better and consistently outperforms FC-LSTM and the state-of-theart operational ROVER algorithm for precipitation nowcasting.
translated by 谷歌翻译
The mainstream of the existing approaches for video prediction builds up their models based on a Single-In-Single-Out (SISO) architecture, which takes the current frame as input to predict the next frame in a recursive manner. This way often leads to severe performance degradation when they try to extrapolate a longer period of future, thus limiting the practical use of the prediction model. Alternatively, a Multi-In-Multi-Out (MIMO) architecture that outputs all the future frames at one shot naturally breaks the recursive manner and therefore prevents error accumulation. However, only a few MIMO models for video prediction are proposed and they only achieve inferior performance due to the date. The real strength of the MIMO model in this area is not well noticed and is largely under-explored. Motivated by that, we conduct a comprehensive investigation in this paper to thoroughly exploit how far a simple MIMO architecture can go. Surprisingly, our empirical studies reveal that a simple MIMO model can outperform the state-of-the-art work with a large margin much more than expected, especially in dealing with longterm error accumulation. After exploring a number of ways and designs, we propose a new MIMO architecture based on extending the pure Transformer with local spatio-temporal blocks and a new multi-output decoder, namely MIMO-VP, to establish a new standard in video prediction. We evaluate our model in four highly competitive benchmarks (Moving MNIST, Human3.6M, Weather, KITTI). Extensive experiments show that our model wins 1st place on all the benchmarks with remarkable performance gains and surpasses the best SISO model in all aspects including efficiency, quantity, and quality. We believe our model can serve as a new baseline to facilitate the future research of video prediction tasks. The code will be released.
translated by 谷歌翻译
地球天文台是一个不断增长的研究领域,可以在短时间预测(即现在的情况下)利用AI的力量。在这项工作中,我们使用视频变压器网络应对天气预报的挑战。视觉变压器体系结构已在各种应用中进行了探索,主要限制是注意力的计算复杂性和饥饿的培训。为了解决这些问题,我们建议使用视频Swin-Transformer,再加上专用的增强计划。此外,我们在编码器侧采用逐渐的空间减少,并在解码器上进行了交叉注意。在Weather4cast2021天气预报挑战数据中测试了建议的方法,该数据需要从每小时的天气产品序列预测未来的8小时(每小时4个小时)。将数据集归一化为0-1,以促进使用不同数据集的评估指标。该模型在提供训练数据时会导致MSE得分为0.4750,在不使用培训数据的情况下转移学习过程中为0.4420。
translated by 谷歌翻译
最近,对于长期时间序列预测(LTSF)任务,基于变压器的解决方案激增。尽管过去几年的表现正在增长,但我们质疑这项研究中这一研究的有效性。具体而言,可以说,变形金刚是最成功的解决方案,是在长序列中提取元素之间的语义相关性。但是,在时间序列建模中,我们要在一组连续点的有序集中提取时间关系。在采用位置编码和使用令牌将子系列嵌入变压器中的同时,有助于保留某些订购信息,但\ emph {置换不变}的自我注意力专注机制的性质不可避免地会导致时间信息损失。为了验证我们的主张,我们介绍了一组名为LTSF线性的令人尴尬的简单单层线性模型,以进行比较。在九个现实生活数据集上的实验结果表明,LTSF线性在所有情况下都超过现有的基于变压器的LTSF模型,并且通常要大幅度较大。此外,我们进行了全面的经验研究,以探索LTSF模型各种设计元素对其时间关系提取能力的影响。我们希望这一令人惊讶的发现为LTSF任务打开了新的研究方向。我们还主张重新审视基于变压器解决方案对其他时间序列分析任务(例如,异常检测)的有效性。代码可在:\ url {https://github.com/cure-lab/ltsf-linear}中获得。
translated by 谷歌翻译
Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks e.g., Long short-term memory (LSTM). Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to fundamental concepts behind the success of Transformers i.e., self-attention, large-scale pre-training, and bidirectional feature encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization) and 3D analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges towards the application of transformer models in computer vision.
translated by 谷歌翻译
表面缺陷检测是确保工业产品质量的极其至关重要的步骤。如今,基于编码器架构的卷积神经网络(CNN)在各种缺陷检测任务中取得了巨大的成功。然而,由于卷积的内在局部性,它们通常在明确建模长距离相互作用时表现出限制,这对于复杂情况下的像素缺陷检测至关重要,例如杂乱的背景和难以辨认的伪缺陷。最近的变压器尤其擅长学习全球图像依赖性,但对于详细的缺陷位置所需的本地结构信息有限。为了克服上述局限性,我们提出了一个有效的混合变压器体系结构,称为缺陷变压器(faft),用于表面缺陷检测,该检测将CNN和Transferaler纳入统一模型,以协作捕获本地和非本地关系。具体而言,在编码器模块中,首先采用卷积茎块来保留更详细的空间信息。然后,贴片聚合块用于生成具有四个层次结构的多尺度表示形式,每个层次结构之后分别是一系列的feft块,该块分别包括用于本地位置编码的本地位置块,一个轻巧的多功能自我自我 - 注意与良好的计算效率建模多尺度的全球上下文关系,以及用于功能转换和进一步位置信息学习的卷积馈送网络。最后,提出了一个简单但有效的解码器模块,以从编码器中的跳过连接中逐渐恢复空间细节。与其他基于CNN的网络相比,三个数据集上的广泛实验证明了我们方法的优势和效率。
translated by 谷歌翻译
用于深度卷积神经网络的视频插值的现有方法,因此遭受其内在限制,例如内部局限性核心权重和受限制的接收领域。为了解决这些问题,我们提出了一种基于变换器的视频插值框架,允许内容感知聚合权重,并考虑具有自我关注操作的远程依赖性。为避免全球自我关注的高计算成本,我们将当地注意的概念引入视频插值并将其扩展到空间域。此外,我们提出了一个节省时间的分离策略,以节省内存使用,这也提高了性能。此外,我们开发了一种多尺度帧合成方案,以充分实现变压器的潜力。广泛的实验证明了所提出的模型对最先进的方法来说,定量和定性地在各种基准数据集上进行定量和定性。
translated by 谷歌翻译
Multivariate time series forecasting (MTSF) is a fundamental problem in numerous real-world applications. Recently, Transformer has become the de facto solution for MTSF, especially for the long-term cases. However, except for the one forward operation, the basic configurations in existing MTSF Transformer architectures were barely carefully verified. In this study, we point out that the current tokenization strategy in MTSF Transformer architectures ignores the token uniformity inductive bias of Transformers. Therefore, the vanilla MTSF transformer struggles to capture details in time series and presents inferior performance. Based on this observation, we make a series of evolution on the basic architecture of the vanilla MTSF transformer. We vary the flawed tokenization strategy, along with the decoder structure and embeddings. Surprisingly, the evolved simple transformer architecture is highly effective, which successfully avoids the over-smoothing phenomena in the vanilla MTSF transformer, achieves a more detailed and accurate prediction, and even substantially outperforms the state-of-the-art Transformers that are well-designed for MTSF.
translated by 谷歌翻译
神经预测的最新进展加速了大规模预测系统的性能。然而,长途预测仍然是一项非常艰巨的任务。困扰任务的两个常见挑战是预测的波动及其计算复杂性。我们介绍了N-HITS,该模型通过结合新的分层插值和多率数据采样技术来解决挑战。这些技术使提出的方法能够顺序组装其预测,并在分解输入信号并合成预测的同时强调不同频率和尺度的组件。我们证明,在平稳性的情况下,层次结构插值技术可以有效地近似于任意长的视野。此外,我们从长远的预测文献中进行了广泛的大规模数据集实验,证明了我们方法比最新方法的优势,在该方法中,N-HITS可提供比最新的16%的平均准确性提高。变压器体系结构在减少计算时间的同时(50次)。我们的代码可在https://bit.ly/3jlibp8上找到。
translated by 谷歌翻译
时空预测学习是通过历史先验知识来预测未来的框架变化。以前的工作通过使网络更广泛和更深入来改善性能,但这也带来了巨大的内存开销,这严重阻碍了技术的开发和应用。比例是提高普通计算机视觉任务中模型性能的另一个维度,这可以减少计算要求并更好地感知环境。最近的RNN模型尚未考虑和探索如此重要的维度。在本文中,我们从多尺度的好处中学习,我们提出了一个名为多尺度RNN(MS-RNN)的通用框架,以增强最近的RNN模型。我们通过在4个不同的数据集上使用6种流行的RNN模型(Convlstm,Trajgru,Predrnn,Prodrnn ++,MIM和MotionRNN)进行详尽的实验来验证MS-RNN框架。结果表明,将RNN模型纳入我们的框架的效率低得多,但性能比以前更好。我们的代码在\ url {https://github.com/mazhf/ms-rnn}上发布。
translated by 谷歌翻译
时尚预测学习是给定一系列历史框架的未来框架。传统算法主要基于经常性的神经网络(RNN)。然而,由于经常性结构的序列性,RNN遭受了重大计算负担,例如由于经常性结构的序列性而达到时间和长的背部传播过程。最近,还以编码器 - 解码器或普通编码器的形式研究了基于变压器的方法,但是编码器 - 解码器形式需要过于深的网络,并且普通编码器缺乏短期依赖性。为了解决这些问题,我们提出了一种名为3D时间卷积变压器(TCTN)的算法,其中采用具有时间卷积层的基于变压器的编码器来捕获短期和长期依赖性。由于变压器的并行机理,我们所提出的算法与基于RNN的方法相比,易于实施和培训得多。为了验证我们的算法,我们对移动和kth数据集进行实验,并表明TCTN在性能和训练速度下表现出最先进的(SOTA)方法。
translated by 谷歌翻译
变形金刚最近在计算机视觉社区中引起了极大的关注。然而,缺乏关于图像大小的自我注意力机制的可扩展性限制了它们在最先进的视觉骨架中的广泛采用。在本文中,我们介绍了一种高效且可扩展的注意模型,我们称之为多轴注意,该模型由两个方面组成:阻止局部和扩张的全球关注。这些设计选择允许仅具有线性复杂性的任意输入分辨率上进行全局本地空间相互作用。我们还通过有效地将我们提出的注意模型与卷积混合在一起,提出了一个新的建筑元素,因此,通过简单地在多个阶段重复基本的构建块,提出了一个简单的层次视觉主链,称为Maxvit。值得注意的是,即使在早期的高分辨率阶段,Maxvit也能够在整个网络中“看到”。我们证明了模型在广泛的视觉任务上的有效性。根据图像分类,Maxvit在各种设置下实现最先进的性能:没有额外的数据,Maxvit获得了86.5%的Imagenet-1K Top-1精度;使用Imagenet-21K预训练,我们的模型可实现88.7%的TOP-1精度。对于下游任务,麦克斯维特(Maxvit)作为骨架可在对象检测以及视觉美学评估方面提供有利的性能。我们还表明,我们提出的模型表达了ImageNet上强大的生成建模能力,这表明了Maxvit块作为通用视觉模块的优势潜力。源代码和训练有素的模型将在https://github.com/google-research/maxvit上找到。
translated by 谷歌翻译
变压器是一种基于关注的编码器解码器架构,彻底改变了自然语言处理领域。灵感来自这一重大成就,最近在将变形式架构调整到计算机视觉(CV)领域的一些开创性作品,这已经证明了他们对各种简历任务的有效性。依靠竞争力的建模能力,与现代卷积神经网络相比在本文中,我们已经为三百不同的视觉变压器进行了全面的审查,用于三个基本的CV任务(分类,检测和分割),提出了根据其动机,结构和使用情况组织这些方法的分类。 。由于培训设置和面向任务的差异,我们还在不同的配置上进行了评估了这些方法,以便于易于和直观的比较而不是各种基准。此外,我们已经揭示了一系列必不可少的,但可能使变压器能够从众多架构中脱颖而出,例如松弛的高级语义嵌入,以弥合视觉和顺序变压器之间的差距。最后,提出了三个未来的未来研究方向进行进一步投资。
translated by 谷歌翻译
最近,由于引入变压器,时间序列的性能最近得到了极大的改善。在本文中,我们提出了一个一般的多尺度框架,可以应用于基于最新的变压器的时间序列预测模型,包括自动构造和告密者。使用具有共同权重,体系结构适应和专门设计的归一化方案的多个尺度上的预测时间序列,我们能够通过最小的其他计算开销来实现重大的性能改进。通过详细的消融研究,我们证明了我们提出的建筑和方法论创新的有效性。此外,我们在四个公共数据集上的实验表明,所提出的多规模框架的表现优于相应的基线,平均改善比自动型和告密者的平均改善分别为13%和38%。
translated by 谷歌翻译
基于变压器的方法最近在基于2D图像的视力任务上取得了巨大进步。但是,对于基于3D视频的任务,例如动作识别,直接将时空变压器应用于视频数据将带来沉重的计算和记忆负担,因为斑块的数量大大增加以及自我注意计算的二次复杂性。如何对视频数据的3D自我注意力进行有效地建模,这对于变压器来说是一个巨大的挑战。在本文中,我们提出了一种时间贴片移动(TPS)方法,用于在变压器中有效的3D自发明建模,以进行基于视频的动作识别。 TPS在时间尺寸中以特定的镶嵌图模式移动斑块的一部分,从而将香草的空间自我发项操作转换为时空的一部分,几乎没有额外的成本。结果,我们可以使用几乎相同的计算和记忆成本来计算3D自我注意力。 TPS是一个插件模块,可以插入现有的2D变压器模型中,以增强时空特征学习。提出的方法可以通过最先进的V1和V1,潜水-48和Kinetics400实现竞争性能,同时在计算和内存成本方面效率更高。 TPS的源代码可在https://github.com/martinxm/tps上找到。
translated by 谷歌翻译
识别息肉对于在计算机辅助临床支持系统中自动分析内窥镜图像的自动分析具有挑战性。已经提出了基于卷积网络(CNN),变压器及其组合的模型,以分割息肉以有希望的结果。但是,这些方法在模拟息肉的局部外观方面存在局限性,或者在解码过程中缺乏用于空间依赖性的多层次特征。本文提出了一个新颖的网络,即结肠形式,以解决这些局限性。 Colonformer是一种编码器架构,能够在编码器和解码器分支上对远程语义信息进行建模。编码器是一种基于变压器的轻量级体系结构,用于在多尺度上建模全局语义关系。解码器是一种层次结构结构,旨在学习多层功能以丰富特征表示。此外,添加了一个新的Skip连接技术,以完善整体地图中的息肉对象的边界以进行精确分割。已经在五个流行的基准数据集上进行了广泛的实验,以进行息肉分割,包括Kvasir,CVC-Clinic DB,CVC-ColondB,CVC-T和Etis-Larib。实验结果表明,我们的结肠构造者在所有基准数据集上的表现优于其他最先进的方法。
translated by 谷歌翻译
时空预测学习旨在通过从历史框架中学习来产生未来的帧。在本文中,我们研究了现有方法,并提出了时空预测学习的一般框架,其中空间编码器和解码器捕获框架内特征和中间时间模块捕获框架间相关性。尽管主流方法采用经常性单元来捕获长期的时间依赖性,但由于无法可行的架构,它们的计算效率低。为了使时间模块并行,我们提出了时间注意单元(TAU),该单元将时间关注分解为框内静态注意力和框架间动力学注意力。此外,虽然平方误差损失侧重于框架内错误,但我们引入了一种新颖的差异差异正则化,以考虑框架间的变化。广泛的实验表明,所提出的方法使派生模型能够在各种时空预测基准上实现竞争性能。
translated by 谷歌翻译