可以用半监督学习算法执行地震阻抗反转,该算法只需要几个日志作为标签,而且不太可能过度装备。然而,经典的半监督学习算法通常导致预测阻抗图像上的伪影。在这个艺术中,我们从两个方面改善了半监督学习。首先,通过用2-D CNN层和2-D MaxPooling层替换深度学习结构中的1-D卷积神经网络(CNN)层,提高了预测精度。其次,还可以通过将网络嵌入到贝叶斯推断框架中来估计预测不确定性。在网络的前向传播期间使用本地重新支柱化技巧以降低采样成本。用Marmousi2模型和缝模型测试验证了拟议策略的可行性。
translated by 谷歌翻译
Kullback-Leibler(KL)差异广泛用于贝叶斯神经网络(BNNS)的变异推理。然而,KL差异具有无限性和不对称性等局限性。我们检查了更通用,有限和对称的詹森 - 香农(JS)差异。我们根据几何JS差异为BNN制定新的损失函数,并表明基于KL差异的常规损失函数是其特殊情况。我们以封闭形式的高斯先验评估拟议损失函数的差异部分。对于任何其他一般的先验,都可以使用蒙特卡洛近似值。我们提供了实施这两种情况的算法。我们证明所提出的损失函数提供了一个可以调整的附加参数,以控制正则化程度。我们得出了所提出的损失函数在高斯先验和后代的基于KL差异的损失函数更好的条件。我们证明了基于嘈杂的CIFAR数据集和有偏见的组织病理学数据集的最新基于KL差异的BNN的性能提高。
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
从降压和嘈杂的测量值(例如MRI和低剂量计算机断层扫描(CT))中重建图像是数学上不良的反问题。我们提出了一种基于期望传播(EP)技术的易于使用的重建方法。我们将蒙特卡洛(MC)方法,马尔可夫链蒙特卡洛(MCMC)和乘数(ADMM)算法的交替方向方法纳入EP方法,以解决EP中遇到的棘手性问题。我们在复杂的贝叶斯模型上演示了图像重建的方法。我们的技术应用于伽马相机扫描中的图像。我们仅将EPMC,EP-MCMC,EP-ADMM方法与MCMC进行比较。指标是更好的图像重建,速度和参数估计。在真实和模拟数据中使用伽马相机成像进行的实验表明,我们提出的方法在计算上比MCMC昂贵,并且产生相对更好的图像重建。
translated by 谷歌翻译
Uncertainty quantification is crucial to inverse problems, as it could provide decision-makers with valuable information about the inversion results. For example, seismic inversion is a notoriously ill-posed inverse problem due to the band-limited and noisy nature of seismic data. It is therefore of paramount importance to quantify the uncertainties associated to the inversion process to ease the subsequent interpretation and decision making processes. Within this framework of reference, sampling from a target posterior provides a fundamental approach to quantifying the uncertainty in seismic inversion. However, selecting appropriate prior information in a probabilistic inversion is crucial, yet non-trivial, as it influences the ability of a sampling-based inference in providing geological realism in the posterior samples. To overcome such limitations, we present a regularized variational inference framework that performs posterior inference by implicitly regularizing the Kullback-Leibler divergence loss with a CNN-based denoiser by means of the Plug-and-Play methods. We call this new algorithm Plug-and-Play Stein Variational Gradient Descent (PnP-SVGD) and demonstrate its ability in producing high-resolution, trustworthy samples representative of the subsurface structures, which we argue could be used for post-inference tasks such as reservoir modelling and history matching. To validate the proposed method, numerical tests are performed on both synthetic and field post-stack seismic data.
translated by 谷歌翻译
众所周知,即使通过核心点之间捕获数据点之间的相似性,也可以通过捕获相似性来提供准确的预测和不确定性估计,以提供准确的预测和不确定性估计。然而,传统的GP内核在捕获高维数据点之间的相似性时不是非常有效的。神经网络可用于学习在高维数据中编码复杂结构的良好表示,并且可以用作GP内核的输入。然而,神经网络的巨大数据要求使得这种方法在小数据设置中无效。为了解决代表学习和数据效率的冲突问题,我们建议通过使用概率神经网络来学习概率嵌入的深核。我们的方法将高维数据映射到低维子空间中的概率分布,然后计算这些分布之间的内核以捕获相似性。要启用端到端学习,我们可以推导出用于培训模型的功能梯度血清过程。各种数据集的实验表明,我们的方法在监督和半监督设置中占GP内核学习中的最先进。我们还将我们的方法扩展到其他小型数据范例,例如少量分类,在迷你想象网和小熊数据集上以前的方式胜过先前的方法。
translated by 谷歌翻译
在这项工作中,我们使用变分推论来量化无线电星系分类的深度学习模型预测的不确定性程度。我们表明,当标记无线电星系时,个体测试样本的模型后差水平与人类不确定性相关。我们探讨了各种不同重量前沿的模型性能和不确定性校准,并表明稀疏事先产生更良好的校准不确定性估计。使用单个重量的后部分布,我们表明我们可以通过从最低信噪比(SNR)中除去权重来修剪30%的完全连接的层权重,而无需显着损失性能。我们证明,可以使用基于Fisher信息的排名来实现更大程度的修剪,但我们注意到两种修剪方法都会影响Failaroff-Riley I型和II型无线电星系的不确定性校准。最后,我们表明,与此领域的其他工作相比,我们经历了冷的后效,因此后部必须缩小后加权以实现良好的预测性能。我们检查是否调整成本函数以适应模型拼盘可以弥补此效果,但发现它不会产生显着差异。我们还研究了原则数据增强的效果,并发现这改善了基线,而且还没有弥补观察到的效果。我们将其解释为寒冷的后效,因为我们的培训样本过于有效的策划导致可能性拼盘,并将其提高到未来无线电银行分类的潜在问题。
translated by 谷歌翻译
尽管基于卷积神经网络(CNN)的组织病理学图像的分类模型,但量化其不确定性是不可行的。此外,当数据偏置时,CNN可以遭受过度装备。我们展示贝叶斯-CNN可以通过自动规范并通过量化不确定性来克服这些限制。我们开发了一种新颖的技术,利用贝叶斯-CNN提供的不确定性,这显着提高了大部分测试数据的性能(约为77%的测试数据的准确性提高了约6%)。此外,我们通过非线性维度降低技术将数据投射到低尺寸空间来提供对不确定性的新颖解释。该维度降低能够通过可视化解释测试数据,并在低维特征空间中揭示数据的结构。我们表明,贝叶斯-CNN可以通过分别将假阴性和假阳性降低11%和7.7%的最先进的转移学习CNN(TL-CNN)来表现出远得更好。它具有仅为186万个参数的这种性能,而TL-CNN的参数仅为134.33亿。此外,我们通过引入随机自适应激活功能来修改贝叶斯-CNN。修改后的贝叶斯-CNN在所有性能指标上的贝叶斯-CNN略胜一筹,并显着降低了误报和误报的数量(两者减少了3%)。我们还表明,通过执行McNemar的统计显着性测试,这些结果具有统计学意义。这项工作显示了贝叶斯-CNN对现有技术的优势,解释并利用组织病理学图像的不确定性。它应该在各种医学图像分类中找到应用程序。
translated by 谷歌翻译
贝叶斯神经网络(BNNS)已成为缓解深度学习中过度自信预测的主要方法,但由于大量分布参数,它们经常遭受扩展问题。在本文中,我们发现在单独再培训时,深网络的第一层拥有多个不同的Optima。这表示当第一层由贝叶斯层改变时的大后差,这使我们能够设计空间融合BNN(STF-BNN),以便有效地将BNN缩放到大型模型:(1)首先常常培训一个神经网络网络从头开始实现快速训练; (2)第一层被转换为贝叶斯和通过采用随机变分推断推断,而其他层是固定的。与香草BNN相比,我们的方法可以大大减少训练时间和参数的数量,这有助于高效地缩放BNN。我们进一步提供了对概括性和缓解STF-BNN过度限制的能力的理论保障。综合实验表明,STF-BNN(1)实现了最先进的性能,以进行预测和不确定量化; (2)显着提高对抗性鲁棒性和隐私保护; (3)大大降低了培训时间和内存成本。
translated by 谷歌翻译
We propose a general purpose variational inference algorithm that forms a natural counterpart of gradient descent for optimization. Our method iteratively transports a set of particles to match the target distribution, by applying a form of functional gradient descent that minimizes the KL divergence. Empirical studies are performed on various real world models and datasets, on which our method is competitive with existing state-of-the-art methods. The derivation of our method is based on a new theoretical result that connects the derivative of KL divergence under smooth transforms with Stein's identity and a recently proposed kernelized Stein discrepancy, which is of independent interest.
translated by 谷歌翻译
深度展开是一种基于深度学习的图像重建方法,它弥合了基于模型和纯粹的基于深度学习的图像重建方法之间的差距。尽管深层展开的方法实现了成像问题的最新性能,并允许将观察模型纳入重建过程,但它们没有提供有关重建图像的任何不确定性信息,这严重限制了他们在实践中的使用,尤其是用于安全 - 关键成像应用。在本文中,我们提出了一个基于学习的图像重建框架,该框架将观察模型纳入重建任务中,并能够基于深层展开和贝叶斯神经网络来量化认知和核心不确定性。我们证明了所提出的框架在磁共振成像和计算机断层扫描重建问题上的不确定性表征能力。我们研究了拟议框架提供的认知和态度不确定性信息的特征,以激发未来的研究利用不确定性信息来开发更准确,健壮,可信赖,不确定性,基于学习的图像重建和成像问题的分析方法。我们表明,所提出的框架可以提供不确定性信息,同时与最新的深层展开方法实现可比的重建性能。
translated by 谷歌翻译
数据和标签的联合分布的KL差异目标允许在随机变异推断的一个保护伞下统一监督的学习和变异自动编码器(VAE)。统一激发了扩展的监督方案,该方案允许计算神经网络模型的合适性P值。通过神经网络摊销的条件归一化流在这种结构中至关重要。我们讨论了它们如何允许在产品空间上共同定义的后代定义的覆盖范围,例如$ \ mathbb {r}^n \ times \ times \ mathcal {s}^m $,它包含在方向上的海报。最后,系统的不确定性自然包含在变化观点中。在经典的可能性方法或其他机器学习模型中,(1)系统,(2)覆盖范围和(3)拟合优度的成分通常并非全部可用,或者至少有一个受到严格限制。相比之下,拟议的扩展监督培训和摊销标准化流量可容纳所有三个,用于在产品空间上定义的任意统计分布的变异推理,例如$ \ mathbb {r}^n \ times \ times \ ldots \ ldots \ times \ times \ mathcal {s}^m {s}^m $,没有基本数据复杂性的基本障碍。因此,它具有当代(Astro-)粒子物理学家的统计工具箱的巨大潜力。
translated by 谷歌翻译
我们建议使用贝叶斯推理和深度神经网络的技术,将地震成像中的不确定性转化为图像上执行的任务的不确定性,例如地平线跟踪。地震成像是由于带宽和孔径限制,这是一个不良的逆问题,由于噪声和线性化误差的存在而受到阻碍。但是,许多正规化方法,例如变形域的稀疏性促进,已设计为处理这些错误的不利影响,但是,这些方法具有偏向解决方案的风险,并且不提供有关图像空间中不确定性的信息以及如何提供信息。不确定性会影响图像上的某些任务。提出了一种系统的方法,以将由于数据中的噪声引起的不确定性转化为图像中自动跟踪视野的置信区间。不确定性的特征是卷积神经网络(CNN)并评估这些不确定性,样品是从CNN权重的后验分布中得出的,用于参数化图像。与传统先验相比,文献中认为,这些CNN引入了灵活的感应偏见,这非常适合各种问题。随机梯度Langevin动力学的方法用于从后验分布中采样。该方法旨在处理大规模的贝叶斯推理问题,即具有地震成像中的计算昂贵的远期操作员。除了提供强大的替代方案外,最大的后验估计值容易过度拟合外,访问这些样品还可以使我们能够在数据中的噪声中转换图像中的不确定性,以便在跟踪的视野上不确定性。例如,它承认图像上的重点标准偏差和自动跟踪视野的置信区间的估计值。
translated by 谷歌翻译
对于许多工程应用,例如实时模拟或控制,潜在的非线性问题的传统解决方案技术通常是过于计算的。在这项工作中,我们提出了一种高效的深度学习代理框架,能够预测负载下的超弹性体的响应。代理模型采用特殊的卷积神经网络架构,所谓的U-Net的形式,其具有用有限元方法获得的力 - 位移数据训练。我们提出了框架的确定性和概率版本,并研究了三个基准问题。特别是,我们检查最大可能性和变分贝叶斯推论配方的能力,以评估解决方案的置信区间。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)的最新表现突破,尤其是深度学习的进步(DL),功能强大,易于使用的ML库(例如Scikit-Learn,Tensorflow,Pytorch。),Pytorch。,Pytorch。。核工程师对AI/ML的前所未有的兴趣,并增加了计算能力。对于基于物理学的计算模型,已经广泛研究了验证,验证和不确定性定量(VVUQ),并且已经开发了许多方法。但是,ML模型的VVUQ的研究相对较少,尤其是在核工程中。在这项工作中,我们专注于ML模型的UQ作为ML VVUQ的初步步骤,更具体地说,是Deep Neural Networks(DNNS),因为它们是用于回归和分类任务的最广泛使用的监督ML算法。这项工作旨在量化DNN的预测或近似不确定性,当它们用作昂贵的物理模型的替代模型时。比较了DNN UQ的三种技术,即Monte Carlo辍学(MCD),深层合奏(DE)和贝叶斯神经网络(BNNS)。两个核工程示例用于基准这些方法,(1)使用野牛代码的时间依赖性裂变气体释放数据,以及(2)基于BFBT基准测试的无效分数模拟使用痕量代码。发现这三种方法通常需要不同的DNN体系结构和超参数来优化其性能。 UQ结果还取决于可用培训数据的量和数据的性质。总体而言,所有这三种方法都可以提供对近似不确定性的合理估计。当平均预测接近测试数据时,不确定性通常较小,而BNN方法通常会产生比MCD和DE更大的不确定性。
translated by 谷歌翻译
Large multilayer neural networks trained with backpropagation have recently achieved state-ofthe-art results in a wide range of problems. However, using backprop for neural net learning still has some disadvantages, e.g., having to tune a large number of hyperparameters to the data, lack of calibrated probabilistic predictions, and a tendency to overfit the training data. In principle, the Bayesian approach to learning neural networks does not have these problems. However, existing Bayesian techniques lack scalability to large dataset and network sizes. In this work we present a novel scalable method for learning Bayesian neural networks, called probabilistic backpropagation (PBP). Similar to classical backpropagation, PBP works by computing a forward propagation of probabilities through the network and then doing a backward computation of gradients. A series of experiments on ten real-world datasets show that PBP is significantly faster than other techniques, while offering competitive predictive abilities. Our experiments also show that PBP provides accurate estimates of the posterior variance on the network weights.
translated by 谷歌翻译
贝叶斯神经网络(BNNS)通过考虑为每个输入的权重和采样不同模型的分布,提供了一种工具来估计神经网络的不确定性。在本文中,我们提出了一种称为变异神经网络的神经网络中不确定性估计的方法,该方法通过使用可学习的子层转换其输入来生成层的输出分布的参数,而是为层的输出分布生成参数。在不确定性质量估计实验中,我们表明VNN与通过反向传播方法相比,VNN比Monte Carlo辍学或贝叶斯获得更好的不确定性质量。
translated by 谷歌翻译
远期操作员的计算成本和选择适当的先前分布的计算成本挑战了贝叶斯对高维逆问题的推断。摊销的变异推理解决了这些挑战,在这些挑战中,训练神经网络以近似于现有模型和数据对的后验分布。如果以前看不见的数据和正态分布的潜在样品作为输入,则预处理的深神经网络(在我们的情况下是有条件的正常化流量)几乎没有成本的后验样品。然而,这种方法的准确性取决于高保真训练数据的可用性,由于地球的异质结构,由于地球物理逆问题很少存在。此外,准确的摊销变异推断需要从训练数据分布中汲取观察到的数据。因此,我们建议通过基于物理学的校正对有条件的归一化流量分布来提高摊销变异推断的弹性。为了实现这一目标,我们不是标准的高斯潜在分布,我们通过具有未知平均值和对角线协方差的高斯分布来对潜在分布进行参数化。然后,通过最小化校正后分布和真实后验分布之间的kullback-leibler差异来估算这些未知数量。尽管通用和适用于其他反问题,但通过地震成像示例,我们表明我们的校正步骤可提高摊销变异推理的鲁棒性,以相对于源实验数量的变化,噪声方差以及先前分布的变化。这种方法提供了伪像有限的地震图像,并评估其不确定性,其成本大致与五个反度迁移相同。
translated by 谷歌翻译
基于深度学习的图像重建方法在许多成像方式中表现出令人印象深刻的经验表现。这些方法通常需要大量的高质量配对训练数据,这在医学成像中通常不可用。为了解决这个问题,我们为贝叶斯框架内的学习重建提供了一种新颖的无监督知识转移范式。提出的方法分为两个阶段学习重建网络。第一阶段训练一个重建网络,其中包括一组有序对,包括椭圆的地面真相图像和相应的模拟测量数据。第二阶段微调在没有监督的情况下将经过验证的网络用于更现实的测量数据。通过构造,该框架能够通过重建图像传递预测性不确定性信息。我们在低剂量和稀疏视图计算机断层扫描上提出了广泛的实验结果,表明该方法与几种最先进的监督和无监督的重建技术具有竞争力。此外,对于与培训数据不同的测试数据,与仅在合成数据集中训练的学习方法相比,所提出的框架不仅在视觉上可以显着提高重建质量,而且在PSNR和SSIM方面也可以显着提高重建质量。
translated by 谷歌翻译
我们介绍了一种使用Stein变异推断的概率偏置反转的方案。我们的方法以物理知识的神经网络的形式使用了可区分的远期模型,我们训练该模型以求解Eikonal方程。这可以通过迭代优化粒子差异的粒子集合来快速近似后验。我们表明该方法具有良好的能力处理高度多模式后分布,这在次心逆问题中很常见。进行了一套实验,以检查各种超参数的影响。一旦受过培训,该方法对于研究区域内的任何地震网络几何形状有效,而无需构建旅行时间表。我们表明,计算需求在差异时间的数量中有效地扩展,因此它非常适合分布式声传感等大N传感技术。本手稿中概述的技术除了仅仅是射线追踪过程之外,还具有相当大的含义,其工作流程适用于其他具有计算昂贵的反转过程(例如全波形反演)的字段。
translated by 谷歌翻译