我们介绍了一种使用Stein变异推断的概率偏置反转的方案。我们的方法以物理知识的神经网络的形式使用了可区分的远期模型,我们训练该模型以求解Eikonal方程。这可以通过迭代优化粒子差异的粒子集合来快速近似后验。我们表明该方法具有良好的能力处理高度多模式后分布,这在次心逆问题中很常见。进行了一套实验,以检查各种超参数的影响。一旦受过培训,该方法对于研究区域内的任何地震网络几何形状有效,而无需构建旅行时间表。我们表明,计算需求在差异时间的数量中有效地扩展,因此它非常适合分布式声传感等大N传感技术。本手稿中概述的技术除了仅仅是射线追踪过程之外,还具有相当大的含义,其工作流程适用于其他具有计算昂贵的反转过程(例如全波形反演)的字段。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
Uncertainty quantification is crucial to inverse problems, as it could provide decision-makers with valuable information about the inversion results. For example, seismic inversion is a notoriously ill-posed inverse problem due to the band-limited and noisy nature of seismic data. It is therefore of paramount importance to quantify the uncertainties associated to the inversion process to ease the subsequent interpretation and decision making processes. Within this framework of reference, sampling from a target posterior provides a fundamental approach to quantifying the uncertainty in seismic inversion. However, selecting appropriate prior information in a probabilistic inversion is crucial, yet non-trivial, as it influences the ability of a sampling-based inference in providing geological realism in the posterior samples. To overcome such limitations, we present a regularized variational inference framework that performs posterior inference by implicitly regularizing the Kullback-Leibler divergence loss with a CNN-based denoiser by means of the Plug-and-Play methods. We call this new algorithm Plug-and-Play Stein Variational Gradient Descent (PnP-SVGD) and demonstrate its ability in producing high-resolution, trustworthy samples representative of the subsurface structures, which we argue could be used for post-inference tasks such as reservoir modelling and history matching. To validate the proposed method, numerical tests are performed on both synthetic and field post-stack seismic data.
translated by 谷歌翻译
我们建议使用贝叶斯推理和深度神经网络的技术,将地震成像中的不确定性转化为图像上执行的任务的不确定性,例如地平线跟踪。地震成像是由于带宽和孔径限制,这是一个不良的逆问题,由于噪声和线性化误差的存在而受到阻碍。但是,许多正规化方法,例如变形域的稀疏性促进,已设计为处理这些错误的不利影响,但是,这些方法具有偏向解决方案的风险,并且不提供有关图像空间中不确定性的信息以及如何提供信息。不确定性会影响图像上的某些任务。提出了一种系统的方法,以将由于数据中的噪声引起的不确定性转化为图像中自动跟踪视野的置信区间。不确定性的特征是卷积神经网络(CNN)并评估这些不确定性,样品是从CNN权重的后验分布中得出的,用于参数化图像。与传统先验相比,文献中认为,这些CNN引入了灵活的感应偏见,这非常适合各种问题。随机梯度Langevin动力学的方法用于从后验分布中采样。该方法旨在处理大规模的贝叶斯推理问题,即具有地震成像中的计算昂贵的远期操作员。除了提供强大的替代方案外,最大的后验估计值容易过度拟合外,访问这些样品还可以使我们能够在数据中的噪声中转换图像中的不确定性,以便在跟踪的视野上不确定性。例如,它承认图像上的重点标准偏差和自动跟踪视野的置信区间的估计值。
translated by 谷歌翻译
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
远期操作员的计算成本和选择适当的先前分布的计算成本挑战了贝叶斯对高维逆问题的推断。摊销的变异推理解决了这些挑战,在这些挑战中,训练神经网络以近似于现有模型和数据对的后验分布。如果以前看不见的数据和正态分布的潜在样品作为输入,则预处理的深神经网络(在我们的情况下是有条件的正常化流量)几乎没有成本的后验样品。然而,这种方法的准确性取决于高保真训练数据的可用性,由于地球的异质结构,由于地球物理逆问题很少存在。此外,准确的摊销变异推断需要从训练数据分布中汲取观察到的数据。因此,我们建议通过基于物理学的校正对有条件的归一化流量分布来提高摊销变异推断的弹性。为了实现这一目标,我们不是标准的高斯潜在分布,我们通过具有未知平均值和对角线协方差的高斯分布来对潜在分布进行参数化。然后,通过最小化校正后分布和真实后验分布之间的kullback-leibler差异来估算这些未知数量。尽管通用和适用于其他反问题,但通过地震成像示例,我们表明我们的校正步骤可提高摊销变异推理的鲁棒性,以相对于源实验数量的变化,噪声方差以及先前分布的变化。这种方法提供了伪像有限的地震图像,并评估其不确定性,其成本大致与五个反度迁移相同。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
我们考虑了使用显微镜或X射线散射技术产生的图像数据自组装的模型的贝叶斯校准。为了说明BCP平衡结构中的随机远程疾病,我们引入了辅助变量以表示这种不确定性。然而,这些变量导致了高维图像数据的综合可能性,通常可以评估。我们使用基于测量运输的可能性方法以及图像数据的摘要统计数据来解决这一具有挑战性的贝叶斯推理问题。我们还表明,可以计算出有关模型参数的数据中的预期信息收益(EIG),而无需额外的成本。最后,我们介绍了基于二嵌段共聚物薄膜自组装和自上而下显微镜表征的ohta-kawasaki模型的数值案例研究。为了进行校准,我们介绍了一些基于域的能量和傅立叶的摘要统计数据,并使用EIG量化了它们的信息性。我们证明了拟议方法研究数据损坏和实验设计对校准结果的影响的力量。
translated by 谷歌翻译
We apply Physics Informed Neural Networks (PINNs) to the problem of wildfire fire-front modelling. The PINN is an approach that integrates a differential equation into the optimisation loss function of a neural network to guide the neural network to learn the physics of a problem. We apply the PINN to the level-set equation, which is a Hamilton-Jacobi partial differential equation that models a fire-front with the zero-level set. This results in a PINN that simulates a fire-front as it propagates through a spatio-temporal domain. We demonstrate the agility of the PINN to learn physical properties of a fire under extreme changes in external conditions (such as wind) and show that this approach encourages continuity of the PINN's solution across time. Furthermore, we demonstrate how data assimilation and uncertainty quantification can be incorporated into the PINN in the wildfire context. This is significant contribution to wildfire modelling as the level-set method -- which is a standard solver to the level-set equation -- does not naturally provide this capability.
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
这项研究提出了一种从Schlieren图像中提取定量信息的根本替代方法。该方法使用缩放的,衍生的增强的高斯工艺模型,从水平和垂直方向上的刀边缘从两个相应的Schlieren图像中获得真实的密度估计。我们说明了我们从风洞刺激模型,飞行中的超音速飞机和高阶数值冲击管模拟拍摄的Schlieren图像的方法。
translated by 谷歌翻译
逆问题本质上是普遍存在的,几乎在科学和工程的几乎所有领域都出现,从地球物理学和气候科学到天体物理学和生物力学。解决反问题的核心挑战之一是解决他们的不良天性。贝叶斯推论提供了一种原则性的方法来克服这一方法,通过将逆问题提出为统计框架。但是,当推断具有大幅度的离散表示的字段(所谓的“维度的诅咒”)和/或仅以先前获取的解决方案的形式可用时。在这项工作中,我们提出了一种新的方法,可以使用深层生成模型进行有效,准确的贝叶斯反转。具体而言,我们证明了如何使用生成对抗网络(GAN)在贝叶斯更新中学到的近似分布,并在GAN的低维度潜在空间中重新解决所得的推断问题,从而有效地解决了大规模的解决方案。贝叶斯逆问题。我们的统计框架保留了潜在的物理学,并且被证明可以通过可靠的不确定性估计得出准确的结果,即使没有有关基础噪声模型的信息,这对于许多现有方法来说都是一个重大挑战。我们证明了提出方法对各种反问题的有效性,包括合成和实验观察到的数据。
translated by 谷歌翻译
线性系统发生在整个工程和科学中,最著名的是差分方程。在许多情况下,系统的强迫函数尚不清楚,兴趣在于使用对系统的嘈杂观察来推断强迫以及其他未知参数。在微分方程中,强迫函数是自变量(通常是时间和空间)的未知函数,可以建模为高斯过程(GP)。在本文中,我们展示了如何使用GP内核的截断基础扩展,如何使用线性系统的伴随有效地推断成GP的功能。我们展示了如何实现截短的GP的确切共轭贝叶斯推断,在许多情况下,计算的计算大大低于使用MCMC方法所需的计算。我们证明了普通和部分微分方程系统的方法,并表明基础扩展方法与数量适中的基础向量相近。最后,我们展示了如何使用贝叶斯优化来推断非线性模型参数(例如内核长度尺度)的点估计值。
translated by 谷歌翻译
Multilevel Stein variational gradient descent is a method for particle-based variational inference that leverages hierarchies of approximations of target distributions with varying costs and fidelity to computationally speed up inference. This work provides a cost complexity analysis of multilevel Stein variational gradient descent that applies under milder conditions than previous results, especially in discrete-in-time regimes and beyond the limited settings where Stein variational gradient descent achieves exponentially fast convergence. The analysis shows that the convergence rate of Stein variational gradient descent enters only as a constant factor for the cost complexity of the multilevel version, which means that the costs of the multilevel version scale independently of the convergence rate of Stein variational gradient descent on a single level. Numerical experiments with Bayesian inverse problems of inferring discretized basal sliding coefficient fields of the Arolla glacier ice demonstrate that multilevel Stein variational gradient descent achieves orders of magnitude speedups compared to its single-level version.
translated by 谷歌翻译
对于许多工程应用,例如实时模拟或控制,潜在的非线性问题的传统解决方案技术通常是过于计算的。在这项工作中,我们提出了一种高效的深度学习代理框架,能够预测负载下的超弹性体的响应。代理模型采用特殊的卷积神经网络架构,所谓的U-Net的形式,其具有用有限元方法获得的力 - 位移数据训练。我们提出了框架的确定性和概率版本,并研究了三个基准问题。特别是,我们检查最大可能性和变分贝叶斯推论配方的能力,以评估解决方案的置信区间。
translated by 谷歌翻译
在本文中,我们提出了一种确定性变分推理方法,通过最小化内核差异来产生低差异点,也称为最大均值差异或MMD。基于Wang Et的一般能量变分推理框架。 al。 (2021),最小化内核差异被转换为通过显式欧拉方案求解动态颂音系统。我们将结果算法EVI-MMD命名,并通过其中统一化常数的常规规定常量规定的实例,并以培训数据的形式明确地已知的示例。与分布近似,数值集成和生成式学习中的应用中的替代方法相比,其性能令人满意。 EVI-MMD算法克服了现有MMD-DESCLITHMS的瓶颈,主要适用于两个样本问题。可以在EVI框架下开发具有更复杂结构和潜在优势的算法。
translated by 谷歌翻译
变异推理(VI)的核心原理是将计算复杂后概率密度计算的统计推断问题转换为可拖动的优化问题。该属性使VI比几种基于采样的技术更快。但是,传统的VI算法无法扩展到大型数据集,并且无法轻易推断出越野数据点,而无需重新运行优化过程。该领域的最新发展,例如随机,黑框和摊销VI,已帮助解决了这些问题。如今,生成的建模任务广泛利用摊销VI来实现其效率和可扩展性,因为它利用参数化函数来学习近似的后验密度参数。在本文中,我们回顾了各种VI技术的数学基础,以构成理解摊销VI的基础。此外,我们还概述了最近解决摊销VI问题的趋势,例如摊销差距,泛化问题,不一致的表示学习和后验崩溃。最后,我们分析了改善VI优化的替代差异度量。
translated by 谷歌翻译
语境。斑点检测是天文学中的常见问题。一个例子是在恒星种群建模中,其中从观察结果推断出星系中恒星年龄和金属性的分布。在这种情况下,斑点可能对应于原位的恒星与从卫星中吸收的恒星相对应,而BLOB检测的任务是解散这些组件。当分布带来重大不确定性时,就会出现一个困难,就像从未解决的恒星系统的建模光谱中推断出的恒星种群的情况一样。目前没有不确定性检测BLOB检测的令人满意的方法。目标。我们介绍了一种在恒星系统综合光谱的恒星种群建模的背景下开发的不确定性感知斑点检测方法。方法。我们为经典的blob检测方法的经典laplacian方法的不确定性感知版本开发了理论和计算工具,我们称之为ULOG。这确定了考虑各种尺度的重要斑点。作为将ULOG应用于恒星种群建模的先决条件,我们引入了一种有效计算光谱建模不确定性的方法。该方法基于截断的奇异值分解和马尔可夫链蒙特卡洛采样(SVD-MCMC)。结果。我们将方法应用于星团M54的数据。我们表明,SVD-MCMC推断与标准MCMC的推断相匹配,但计算速度更快。我们将ULOG应用于推断的M54年龄/金属性分布,识别其恒星中的2或3个显着不同的种群。
translated by 谷歌翻译
作为行业4.0时代的一项新兴技术,数字双胞胎因其承诺进一步优化流程设计,质量控制,健康监测,决策和政策制定等,通过全面对物理世界进行建模,以进一步优化流程设计,质量控制,健康监测,决策和政策,因此获得了前所未有的关注。互连的数字模型。在一系列两部分的论文中,我们研究了不同建模技术,孪生启用技术以及数字双胞胎常用的不确定性量化和优化方法的基本作用。第二篇论文介绍了数字双胞胎的关键启示技术的文献综述,重点是不确定性量化,优化方法,开源数据集和工具,主要发现,挑战和未来方向。讨论的重点是当前的不确定性量化和优化方法,以及如何在数字双胞胎的不同维度中应用它们。此外,本文介绍了一个案例研究,其中构建和测试了电池数字双胞胎,以说明在这两部分评论中回顾的一些建模和孪生方法。 GITHUB上可以找到用于生成案例研究中所有结果和数字的代码和预处理数据。
translated by 谷歌翻译