尽管基于卷积神经网络(CNN)的组织病理学图像的分类模型,但量化其不确定性是不可行的。此外,当数据偏置时,CNN可以遭受过度装备。我们展示贝叶斯-CNN可以通过自动规范并通过量化不确定性来克服这些限制。我们开发了一种新颖的技术,利用贝叶斯-CNN提供的不确定性,这显着提高了大部分测试数据的性能(约为77%的测试数据的准确性提高了约6%)。此外,我们通过非线性维度降低技术将数据投射到低尺寸空间来提供对不确定性的新颖解释。该维度降低能够通过可视化解释测试数据,并在低维特征空间中揭示数据的结构。我们表明,贝叶斯-CNN可以通过分别将假阴性和假阳性降低11%和7.7%的最先进的转移学习CNN(TL-CNN)来表现出远得更好。它具有仅为186万个参数的这种性能,而TL-CNN的参数仅为134.33亿。此外,我们通过引入随机自适应激活功能来修改贝叶斯-CNN。修改后的贝叶斯-CNN在所有性能指标上的贝叶斯-CNN略胜一筹,并显着降低了误报和误报的数量(两者减少了3%)。我们还表明,通过执行McNemar的统计显着性测试,这些结果具有统计学意义。这项工作显示了贝叶斯-CNN对现有技术的优势,解释并利用组织病理学图像的不确定性。它应该在各种医学图像分类中找到应用程序。
translated by 谷歌翻译
Kullback-Leibler(KL)差异广泛用于贝叶斯神经网络(BNNS)的变异推理。然而,KL差异具有无限性和不对称性等局限性。我们检查了更通用,有限和对称的詹森 - 香农(JS)差异。我们根据几何JS差异为BNN制定新的损失函数,并表明基于KL差异的常规损失函数是其特殊情况。我们以封闭形式的高斯先验评估拟议损失函数的差异部分。对于任何其他一般的先验,都可以使用蒙特卡洛近似值。我们提供了实施这两种情况的算法。我们证明所提出的损失函数提供了一个可以调整的附加参数,以控制正则化程度。我们得出了所提出的损失函数在高斯先验和后代的基于KL差异的损失函数更好的条件。我们证明了基于嘈杂的CIFAR数据集和有偏见的组织病理学数据集的最新基于KL差异的BNN的性能提高。
translated by 谷歌翻译
在这项工作中,我们使用变分推论来量化无线电星系分类的深度学习模型预测的不确定性程度。我们表明,当标记无线电星系时,个体测试样本的模型后差水平与人类不确定性相关。我们探讨了各种不同重量前沿的模型性能和不确定性校准,并表明稀疏事先产生更良好的校准不确定性估计。使用单个重量的后部分布,我们表明我们可以通过从最低信噪比(SNR)中除去权重来修剪30%的完全连接的层权重,而无需显着损失性能。我们证明,可以使用基于Fisher信息的排名来实现更大程度的修剪,但我们注意到两种修剪方法都会影响Failaroff-Riley I型和II型无线电星系的不确定性校准。最后,我们表明,与此领域的其他工作相比,我们经历了冷的后效,因此后部必须缩小后加权以实现良好的预测性能。我们检查是否调整成本函数以适应模型拼盘可以弥补此效果,但发现它不会产生显着差异。我们还研究了原则数据增强的效果,并发现这改善了基线,而且还没有弥补观察到的效果。我们将其解释为寒冷的后效,因为我们的培训样本过于有效的策划导致可能性拼盘,并将其提高到未来无线电银行分类的潜在问题。
translated by 谷歌翻译
量化监督学习模型的不确定性在制定更可靠的预测方面发挥着重要作用。认知不确定性,通常是由于对模型的知识不足,可以通过收集更多数据或精炼学习模型来减少。在过去的几年里,学者提出了许多认识的不确定性处理技术,这些技术可以大致分为两类,即贝叶斯和集合。本文对过去五年来提供了对监督学习的认识性不确定性学习技术的全面综述。因此,我们首先,将认知不确定性分解为偏见和方差术语。然后,介绍了认知不确定性学习技术以及其代表模型的分层分类。此外,提出了几种应用,例如计算机视觉(CV)和自然语言处理(NLP),然后讨论研究差距和可能的未来研究方向。
translated by 谷歌翻译
这项工作提出了一种用于概率分类器的新算法的Proboost。该算法使用每个训练样本的认知不确定性来确定最具挑战性/不确定的样本。然后,对于下一个弱学习者,这些样本的相关性就会增加,产生序列,该序列逐渐侧重于发现具有最高不确定性的样品。最后,将弱学习者的输出组合成分类器的加权集合。提出了三种方法来操纵训练集:根据弱学习者估计的不确定性,取样,过采样和加权训练样本。此外,还研究了有关集成组合的两种方法。本文所考虑的弱学习者是标准的卷积神经网络,而不确定性估计使用的概率模型则使用变异推理或蒙特卡洛辍学。在MNIST基准数据集上进行的实验评估表明,ProbOOST可以显着改善性能。通过评估这项工作中提出的相对可实现的改进,进一步强调了结果,该指标表明,只有四个弱学习者的模型导致该指标的改进超过12%(出于准确性,灵敏度或特异性),与没有探针的模型相比。
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
Demspter-Shafer证据理论中提出的不确定性量化的信念函数方法是基于对集合值观测的一般数学模型,称为随机集。设定值的预测是机器学习中不确定性的最自然表示。在本文中,我们介绍了一个基于对信仰功能的随机解释来模拟深度神经网络中的认知学习的概念。我们提出了一个新型的随机卷积神经网络,用于分类,该网络通过学习设置值的地面真实表示来为类别的分类产生分数。我们评估信仰功能的熵和距离度量的不同公式,作为这些随机集网络的可行损失函数。我们还讨论了评估认知预测质量和认知随机神经网络的表现的方法。我们通过实验证明,与传统的估计不确定性相比,认知方法可以产生更好的性能结果。
translated by 谷歌翻译
与其他癌症相比,胰腺癌具有最差的预后之一,因为它们已被诊断出癌症已朝着后期阶段发展。当前用于诊断胰腺腺癌的手动组织学分级是耗时的,通常会导致误诊。在数字病理学中,基于AI的癌症分级必须在预测和不确定性量化方面非常准确,以提高可靠性和解释性,对于获得临床医生对技术的信任至关重要。我们提出了MGG自动化胰腺癌分级的贝叶斯卷积神经网络,他对图像进行了染色,以估计模型预测中的不确定性。我们表明,估计的不确定性与预测误差相关。具体而言,它对于使用权衡分类准确性 - 拒绝权衡和错误分类成本的度量标准来设置验收阈值很有用,可以通过超参数控制,并且可以在临床环境中使用。
translated by 谷歌翻译
There are two major types of uncertainty one can model. Aleatoric uncertainty captures noise inherent in the observations. On the other hand, epistemic uncertainty accounts for uncertainty in the model -uncertainty which can be explained away given enough data. Traditionally it has been difficult to model epistemic uncertainty in computer vision, but with new Bayesian deep learning tools this is now possible. We study the benefits of modeling epistemic vs. aleatoric uncertainty in Bayesian deep learning models for vision tasks. For this we present a Bayesian deep learning framework combining input-dependent aleatoric uncertainty together with epistemic uncertainty. We study models under the framework with per-pixel semantic segmentation and depth regression tasks. Further, our explicit uncertainty formulation leads to new loss functions for these tasks, which can be interpreted as learned attenuation. This makes the loss more robust to noisy data, also giving new state-of-the-art results on segmentation and depth regression benchmarks.
translated by 谷歌翻译
贝叶斯神经网络(BNNS)通过考虑为每个输入的权重和采样不同模型的分布,提供了一种工具来估计神经网络的不确定性。在本文中,我们提出了一种称为变异神经网络的神经网络中不确定性估计的方法,该方法通过使用可学习的子层转换其输入来生成层的输出分布的参数,而是为层的输出分布生成参数。在不确定性质量估计实验中,我们表明VNN与通过反向传播方法相比,VNN比Monte Carlo辍学或贝叶斯获得更好的不确定性质量。
translated by 谷歌翻译
对于许多工程应用,例如实时模拟或控制,潜在的非线性问题的传统解决方案技术通常是过于计算的。在这项工作中,我们提出了一种高效的深度学习代理框架,能够预测负载下的超弹性体的响应。代理模型采用特殊的卷积神经网络架构,所谓的U-Net的形式,其具有用有限元方法获得的力 - 位移数据训练。我们提出了框架的确定性和概率版本,并研究了三个基准问题。特别是,我们检查最大可能性和变分贝叶斯推论配方的能力,以评估解决方案的置信区间。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
Objective: Convolutional neural networks (CNNs) have demonstrated promise in automated cardiac magnetic resonance image segmentation. However, when using CNNs in a large real-world dataset, it is important to quantify segmentation uncertainty and identify segmentations which could be problematic. In this work, we performed a systematic study of Bayesian and non-Bayesian methods for estimating uncertainty in segmentation neural networks. Methods: We evaluated Bayes by Backprop, Monte Carlo Dropout, Deep Ensembles, and Stochastic Segmentation Networks in terms of segmentation accuracy, probability calibration, uncertainty on out-of-distribution images, and segmentation quality control. Results: We observed that Deep Ensembles outperformed the other methods except for images with heavy noise and blurring distortions. We showed that Bayes by Backprop is more robust to noise distortions while Stochastic Segmentation Networks are more resistant to blurring distortions. For segmentation quality control, we showed that segmentation uncertainty is correlated with segmentation accuracy for all the methods. With the incorporation of uncertainty estimates, we were able to reduce the percentage of poor segmentation to 5% by flagging 31--48% of the most uncertain segmentations for manual review, substantially lower than random review without using neural network uncertainty (reviewing 75--78% of all images). Conclusion: This work provides a comprehensive evaluation of uncertainty estimation methods and showed that Deep Ensembles outperformed other methods in most cases. Significance: Neural network uncertainty measures can help identify potentially inaccurate segmentations and alert users for manual review.
translated by 谷歌翻译
Even though active learning forms an important pillar of machine learning, deep learning tools are not prevalent within it. Deep learning poses several difficulties when used in an active learning setting. First, active learning (AL) methods generally rely on being able to learn and update models from small amounts of data. Recent advances in deep learning, on the other hand, are notorious for their dependence on large amounts of data. Second, many AL acquisition functions rely on model uncertainty, yet deep learning methods rarely represent such model uncertainty. In this paper we combine recent advances in Bayesian deep learning into the active learning framework in a practical way. We develop an active learning framework for high dimensional data, a task which has been extremely challenging so far, with very sparse existing literature. Taking advantage of specialised models such as Bayesian convolutional neural networks, we demonstrate our active learning techniques with image data, obtaining a significant improvement on existing active learning approaches. We demonstrate this on both the MNIST dataset, as well as for skin cancer diagnosis from lesion images (ISIC2016 task).
translated by 谷歌翻译
深度集合可以被视为最新的深度学习中不确定性量化的最先进的定量。虽然最初提出了该方法作为非贝叶斯技术,但支持其贝叶斯基础的论据也提出。我们表明,通过指定相应的假设,可以将深度集合视为近似贝叶斯方法。我们的研究结果导致改善的近似,导致不确定性的扩大的认识部分。数值示例表明改进的近似可能导致更可靠的不确定性。分析衍生确保易于计算结果。
translated by 谷歌翻译
深度展开是一种基于深度学习的图像重建方法,它弥合了基于模型和纯粹的基于深度学习的图像重建方法之间的差距。尽管深层展开的方法实现了成像问题的最新性能,并允许将观察模型纳入重建过程,但它们没有提供有关重建图像的任何不确定性信息,这严重限制了他们在实践中的使用,尤其是用于安全 - 关键成像应用。在本文中,我们提出了一个基于学习的图像重建框架,该框架将观察模型纳入重建任务中,并能够基于深层展开和贝叶斯神经网络来量化认知和核心不确定性。我们证明了所提出的框架在磁共振成像和计算机断层扫描重建问题上的不确定性表征能力。我们研究了拟议框架提供的认知和态度不确定性信息的特征,以激发未来的研究利用不确定性信息来开发更准确,健壮,可信赖,不确定性,基于学习的图像重建和成像问题的分析方法。我们表明,所提出的框架可以提供不确定性信息,同时与最新的深层展开方法实现可比的重建性能。
translated by 谷歌翻译
智能手表或健身追踪器由于负担得起和纵向监测功能而获得了潜在的健康跟踪设备的广泛欢迎。为了进一步扩大其健康跟踪能力,近年来,研究人员开始研究在实时利用光摄影学(PPG)数据中进行心房颤动(AF)检测的可能性,这是一种几乎所有智能手表中广泛使用的廉价传感器。从PPG信号检测AF检测的重大挑战来自智能手表PPG信号中的固有噪声。在本文中,我们提出了一种基于深度学习的新方法,即利用贝叶斯深度学习的力量来准确地从嘈杂的PPG信号中推断出AF风险,同时提供了预测的不确定性估计。在两个公开可用数据集上进行的广泛实验表明,我们提出的方法贝尼斯甲的表现优于现有的最新方法。此外,贝内斯比特(Bayesbeat)的参数比最先进的基线方法要少40-200倍,使其适合在资源约束可穿戴设备中部署。
translated by 谷歌翻译
We introduce a new, efficient, principled and backpropagation-compatible algorithm for learning a probability distribution on the weights of a neural network, called Bayes by Backprop. It regularises the weights by minimising a compression cost, known as the variational free energy or the expected lower bound on the marginal likelihood. We show that this principled kind of regularisation yields comparable performance to dropout on MNIST classification. We then demonstrate how the learnt uncertainty in the weights can be used to improve generalisation in non-linear regression problems, and how this weight uncertainty can be used to drive the exploration-exploitation trade-off in reinforcement learning.
translated by 谷歌翻译
We introduce a new, efficient, principled and backpropagation-compatible algorithm for learning a probability distribution on the weights of a neural network, called Bayes by Backprop. It regularises the weights by minimising a compression cost, known as the variational free energy or the expected lower bound on the marginal likelihood. We show that this principled kind of regularisation yields comparable performance to dropout on MNIST classification. We then demonstrate how the learnt uncertainty in the weights can be used to improve generalisation in non-linear regression problems, and how this weight uncertainty can be used to drive the exploration-exploitation trade-off in reinforcement learning.
translated by 谷歌翻译
基于神经网络的数据驱动操作员学习方案在计算力学中显示出巨大的潜力。 DeWonet是一种这样的神经网络体系结构,由于其出色的预测能力,它广泛赞赏。话虽如此,在确定性框架中设定的deponet架构面临过度拟合,概括不良和其不变形式的风险,因此无法量化与预测相关的不确定性。我们在本文中提出了一种用于操作员学习的跨贝叶斯迪维诺内特(VB-Deeponet),可以在很大程度上减轻deponet架构的这些局限性,并为用户提供有关预测阶段相关不确定性的更多信息。贝叶斯框架中设定的神经网络背后的关键思想是,神经网络的权重和偏见被视为概率分布而不是点估计,并且使用贝叶斯推理来更新其先前的分布。现在,为了管理与近似后验分布相关的计算成本,提出的VB-Deeponet使用\ textIt {变异推理}。与马尔可夫链蒙特卡洛方案不同,变异推理具有考虑高维后分布的能力,同时保持相关的计算成本较低。涵盖力学问题的不同示例,例如扩散反应,重力摆,对流扩散,以说明了所提出的VB-Deeponet的性能,并且在确定性框架中也对Deeponet集进行了比较。
translated by 谷歌翻译