基于模拟的推理的神经后验估计方法可能不适合通过在多个观测值上进行条件来处理后验分布,因为它们可能需要大量的模拟器调用以产生准确的近似值。神经可能性估计方法可以自然处理多个观察结果,但需要单独的推论步骤,这可能会影响其效率和性能。我们引入了一种基于模拟的推理的新方法,该方法享有两种方法的好处。我们建议对单个观察值引起的后验分布进行建模,并引入采样算法,该算法将学习分数结合在一起以有效地从目标中进行样本。
translated by 谷歌翻译
密度比估计(DRE)是一种用于比较两个概率分布的基本机器学习技术。然而,现有方法在高维设置中斗争,因为难以基于有限样本进行准确地比较概率分布。在这项工作中,我们提出了Dre-\ idty,一种分歧和征服方法来减少DRE到一系列更简单的子问题。灵感来自Monte Carlo方法,我们通过无限连续的中间桥接桥分布平稳地插入两种分布。然后,我们估计索引索引的桥接分布的瞬时变化率(“时间分数”) - 与数据(Stein)分数类似地定义的量 - 具有新的时间得分匹配目标。粗略地,然后可以集成学习的时间评分以计算所需的密度比。此外,我们表明,传统(Stein)得分可用于获得在分布中连接高密度区域,提高实践性能的集成路径。经验上,我们证明我们的方法在复杂的高维数据集上的相互信息估计和基于能量的建模等下游任务中表现出很好。
translated by 谷歌翻译
基于仿真的推理(SBI)是一个有前途的贝叶斯推理框架,可以减轻对分析可能性估计后验分布的需求。使用SBI算法中神经密度估计器的最新进展表明,以大量模拟为代价实现高保真后代的能力。当使用复杂的物理模拟时,这使得他们的应用程序可能非常耗时。在这项工作中,我们着重于使用模拟器的梯度来提高后密度估计的样本效率。我们提出了一种使用可区分模拟器执行神经后验估计(NPE)的新方法。我们展示了梯度信息如何有助于限制后部形状并提高样本效率。
translated by 谷歌翻译
神经密度估计值证明在各种研究领域进行高效的仿真贝叶斯推理方面具有显着强大。特别是,Bayesflow框架使用两步方法来实现在仿真程序隐式地定义似然函数的设置中的摊销参数估计。但是当模拟是现实差的差异时,这种推断是多么忠实?在本文中,我们概念化了基于模拟的推论中出现的模型误操作的类型,并系统地研究了这些误操作下的Bayesflow框架的性能。我们提出了一个增强优化目标,它对潜伏数据空间上的概率结构施加了概率结构,并利用了最大平均差异(MMD)来检测推理期间的可能灾难性的误操作,破坏了所获得的结果的有效性。我们验证了许多人工和现实的误操作的检测标准,从玩具共轭模型到复杂的决策和疾病爆发动态的复杂模型应用于实际数据。此外,我们表明后部推理误差随着真实数据生成分布与潜在摘要空间中的典型模拟集之间的常数而增加。因此,我们展示了MMD的双重实用性作为检测模型误操作的方法和作为验证摊销贝叶斯推理的忠实性的代理。
translated by 谷歌翻译
推断基于实验观察的随机模型的参数是科学方法的核心。特别具有挑战性的设置是当模型强烈不确定时,即当不同的参数集产生相同的观察时。这在许多实际情况下出现,例如在推断无线电源的距离和功率时(是源关闭和弱或远远强,且强大且强大?)或估计电生理实验的放大器增益和底层脑活动。在这项工作中,我们通过利用由辅助观察集共享全局参数传达的附加信息来阐明这种不确定性的新方法。我们的方法基于对贝叶斯分层模型的标准化流程扩展了基于仿真的推断(SBI)的最新进展。我们通过模拟和实际EEG数据将其应用于可用于分析解决方案的激励示例,以便将其验证我们的提案,然后将其从计算神经科学逆变众所周知的非线性模型。
translated by 谷歌翻译
标准化流动,扩散归一化流量和变形自动置换器是强大的生成模型。在本文中,我们提供了一个统一的框架来通过马尔可夫链处理这些方法。实际上,我们考虑随机标准化流量作为一对马尔可夫链,满足一些属性,并表明许多用于数据生成的最先进模型适合该框架。马尔可夫链的观点使我们能够将确定性层作为可逆的神经网络和随机层作为大都会加速层,Langevin层和变形自身偏移,以数学上的声音方式。除了具有Langevin层的密度的层,扩散层或变形自身形式,也可以处理与确定性层或大都会加热器层没有密度的层。因此,我们的框架建立了一个有用的数学工具来结合各种方法。
translated by 谷歌翻译
我们正式地用密度$ p_x $中的未知分发问题映射了从$ \ mathbb {r} ^ d $上学习和采样$ p_ \ mathbf {y} $ in $ \ mathbb {r} ^ {使用固定因子内核将$ P_X $获得的MD} $获取:$ p_ \ mathbf {y} $被称为m密度和因子内核作为多索静音噪声模型(MNM)。 m-litess比$ p_x $更顺畅,更容易学习和示例,但对于大量的$ m $来说,由于估计$ x $来估计$ \ mathbf {y} = \ mathbf {y $使用贝叶斯估算器$ \ widehat {x}(\ mathbf {y})= \ mathbb {e} [x \ vert \ mathbf {y} = \ mathbf {y}。为了制定问题,我们从无通知$ P_ \ MATHBF {Y} $以封闭式表达以封闭式表示的泊松和高斯MNMS获得$ \ widehat {x}(\ mathbf {y})$。这导致了用于学习参数能量和得分功能的简单最小二乘目标。我们展示了各种兴趣的参数化方案,包括研究高斯M密度直接导致多营养的自动化器 - 这是在文献中的去噪自动化器和经验贝叶斯之间进行的第一个理论连接。来自$ P_X $的示例由步行跳转采样(Saremi&Hyvarinen,2019)通过欠款Langevin MCMC(Walk)从$ P_ \ Mathbf {Y} $和Multimeasurement Bayes估算$ x $(跳转)。我们研究Mnist,CiFar-10和FFHQ-256数据集上的置换不变高斯M密度,并证明了该框架的有效性,以实现高尺寸的快速混合稳定的马尔可夫链。
translated by 谷歌翻译
在没有明确或易于处理的可能性的情况下,贝叶斯人经常诉诸于贝叶斯计算(ABC)进行推理。我们的工作基于生成的对抗网络(GAN)和对抗性变分贝叶斯(GAN),为ABC桥接了ABC。 ABC和GAN都比较了观察到的数据和假数据的各个方面,分别从后代和似然模拟。我们开发了一个贝叶斯gan(B-GAN)采样器,该采样器通过解决对抗性优化问题直接靶向后部。 B-GAN是由有条件gan在ABC参考上学习的确定性映射驱动的。一旦训练了映射,就可以通过以可忽略的额外费用过滤噪声来获得IID后样品。我们建议使用(1)数据驱动的提案和(2)变化贝叶斯提出两项后处理的本地改进。我们通过常见的bayesian结果支持我们的发现,表明对于某些神经网络发生器和歧视器,真实和近似后骨之间的典型总变化距离收敛到零。我们对模拟数据的发现相对于一些最新的无可能后验模拟器显示出竞争激烈的性能。
translated by 谷歌翻译
去核扩散模型最近已成为强大的生成模型类别。它们提供最新的结果,不仅用于无条件模拟,而且还提供了解决在各种反问题中产生的条件模拟问题时。这些模型的一个局限性在于它们在生成时间上是计算密集型的,因为它们需要长期模拟扩散过程。进行无条件的模拟时,Schr \“生成建模的Odinger桥式公式会导致理论上接地的算法缩短生成时间,这与其他提出的加速技术互补。我们将Schr \'Edinger桥式桥式扩展到条件模拟。我们在各种应用程序上演示了这种新颖的方法,包括图像超分辨率,状态空间模型的最佳过滤以及预训练的网络的完善。我们的代码可以在https://github.com/vdeborto/cdsb上找到。
translated by 谷歌翻译
标准化流是可易处理的密度模型,可以近似复杂的目标分布,例如物理系统的玻尔兹曼分布。但是,当前的训练流量要么具有寻求模式的行为,要么使用昂贵的MCMC模拟事先生成的目标样本,要么使用具有很高差异的随机损失。为了避免这些问题,我们以退火重要性采样(AIS)增强流量,并最大程度地减少覆盖$ \ alpha $ -divergence的质量,并使用$ \ alpha = 2 $,从而最大程度地减少了重要性的重量差异。我们的方法是流动性Bootstrap(Fab),使用AIS在流动较差的目标区域中生成样品,从而促进了新模式的发现。我们以AIS的最小差异分布来定位,以通过重要性抽样来估计$ \ alpha $ -Divergence。我们还使用优先的缓冲区来存储和重复使用AIS样本。这两个功能显着提高了Fab的性能。我们将FAB应用于复杂的多模式目标,并表明我们可以在以前的方法失败的情况下非常准确地近似它们。据我们所知,我们是第一个仅使用非均衡目标密度学习丙氨酸二肽分子的玻璃体分布,而无需通过分子动力学(MD)模拟生成的样品:FAB与通过最大可能性训练更好的效果,而不是通过最大可能性产生的结果。在MD样品上使用100倍的目标评估。在重新获得重要权重的样品后,我们获得了与地面真相几乎相同的二面角的无偏直方图。
translated by 谷歌翻译
分层模型代表了推理算法的挑战性设置。 MCMC方法难以扩展到具有许多局部变量和观测值的大型模型,并且由于使用简单的变异家族,变异推理(VI)可能无法提供准确的近似值。一些变异方法(例如,重要性加权VI)整合了蒙特卡洛方法以提供更好的准确性,但是这些方法往往不适合层次模型,因为它们不允许亚采样,并且其性能往往会降低高维模型。我们基于分别针对每组局部随机变量的拧紧方法(例如重要性加权)的应用,为分层模型提出了一个新的差异界限家族。我们表明,我们的方法自然允许使用子采样来获得公正的梯度,并且它完全利用了通过在较低维空间中独立应用它们来建立更紧密的下限的方法的力量基线。
translated by 谷歌翻译
基于采样的推理技术是现代宇宙学数据分析的核心;然而,这些方法与维度不良,通常需要近似或顽固的可能性。在本文中,我们描述了截短的边际神经比率估计(TMNRE)(即所谓的基于模拟的推断的新方法)自然避免了这些问题,提高了$(i)$效率,$(ii)$可扩展性和$ (iii)推断后的后续后续的可信度。使用宇宙微波背景(CMB)的测量,我们表明TMNRE可以使用比传统马尔可夫链蒙特卡罗(MCMC)方法更少模拟器呼叫的数量级来实现融合的后海后。值得注意的是,所需数量的样本有效地独立于滋扰参数的数量。此外,称为\ MEMPH {本地摊销}的属性允许对基于采样的方法无法访问的严格统计一致性检查的性能。 TMNRE承诺成为宇宙学数据分析的强大工具,特别是在扩展宇宙学的背景下,其中传统的基于采样的推理方法所需的时间级数融合可以大大超过$ \ Lambda $ CDM等简单宇宙学模型的时间。为了执行这些计算,我们使用开源代码\ texttt {swyft}来使用TMNRE的实现。
translated by 谷歌翻译
无似然推理涉及在给定的数据和模拟器模型的情况下推断参数值。模拟器是计算机代码,它采用参数,执行随机计算并输出模拟数据。在这项工作中,我们将模拟器视为一个函数,其输入为(1)参数和(2)伪随机绘制的向量。我们试图推断出以观察结果为条件的所有这些输入。这是具有挑战性的,因为最终的后验可能是高维且涉及强大的依赖性。我们使用归一化流量(柔性参数密度族)近似后验。训练数据是通过具有较大带宽值Epsilon的非似然重要性采样来生成的,这使得目标与先验相似。培训数据通过使用它来训练更新的归一流流程来“蒸馏”。该过程是迭代的,使用更新的流程作为重要性采样建议,并慢慢降低epsilon,从而使目标变得更接近后部。与大多数其他无似然的方法不同,我们避免将数据减少到低维汇总统计数据,因此可以实现更准确的结果。我们在两个充满挑战的排队和流行病学示例中说明了我们的方法。
translated by 谷歌翻译
我们介绍一种用于推断和预测潜伏状态的方法,以便只能模拟观察,并且转换动态未知。在此设置中,观察的可能性不可用,并且只能从黑盒模拟器生成合成观察。我们提出了一种在有限数量的模拟中完成状态的似然推理(LFI)和状态预测的方法。我们的方法使用多输出高斯工艺进行状态推理,以及贝叶斯神经网络作为状态预测的转换动态的模型。我们改进了现有的推断任务的LFI方法,同时还准确学习过渡动态。所提出的方法对于使用计算昂贵的模拟来建模动态系统中的逆问题是必要的,如使用非静止用户模型的实验中所示。
translated by 谷歌翻译
The choice of approximate posterior distribution is one of the core problems in variational inference. Most applications of variational inference employ simple families of posterior approximations in order to allow for efficient inference, focusing on mean-field or other simple structured approximations. This restriction has a significant impact on the quality of inferences made using variational methods. We introduce a new approach for specifying flexible, arbitrarily complex and scalable approximate posterior distributions. Our approximations are distributions constructed through a normalizing flow, whereby a simple initial density is transformed into a more complex one by applying a sequence of invertible transformations until a desired level of complexity is attained. We use this view of normalizing flows to develop categories of finite and infinitesimal flows and provide a unified view of approaches for constructing rich posterior approximations. We demonstrate that the theoretical advantages of having posteriors that better match the true posterior, combined with the scalability of amortized variational approaches, provides a clear improvement in performance and applicability of variational inference.
translated by 谷歌翻译
We introduce a new generative model where samples are produced via Langevin dynamics using gradients of the data distribution estimated with score matching. Because gradients can be ill-defined and hard to estimate when the data resides on low-dimensional manifolds, we perturb the data with different levels of Gaussian noise, and jointly estimate the corresponding scores, i.e., the vector fields of gradients of the perturbed data distribution for all noise levels. For sampling, we propose an annealed Langevin dynamics where we use gradients corresponding to gradually decreasing noise levels as the sampling process gets closer to the data manifold. Our framework allows flexible model architectures, requires no sampling during training or the use of adversarial methods, and provides a learning objective that can be used for principled model comparisons. Our models produce samples comparable to GANs on MNIST, CelebA and CIFAR-10 datasets, achieving a new state-of-the-art inception score of 8.87 on CIFAR-10. Additionally, we demonstrate that our models learn effective representations via image inpainting experiments.
translated by 谷歌翻译
标准化流是构建概率和生成模型的流行方法。但是,由于需要计算雅各布人的计算昂贵决定因素,因此对流量的最大似然训练是具有挑战性的。本文通过引入一种受到两样本测试启发的流动训练的方法来解决这一挑战。我们框架的核心是能源目标,这是适当评分规则的多维扩展,该规则基于随机预测,可以接受有效的估计器,并且超过了一系列可以在我们的框架中得出的替代两样本目标。至关重要的是,能量目标及其替代方案不需要计算决定因素,因此支持不适合最大似然训练的一般流量体系结构(例如,密度连接的网络)。我们从经验上证明,能量流达到竞争性生成建模性能,同时保持快速产生和后部推断。
translated by 谷歌翻译
引入后二十年多,退火重要性采样(AIS)仍然是边际可能性估计的最有效方法之一。它依赖于一系列分布序列在可聊天的初始分布和利益的目标分布之间插值,我们从大约使用非均匀的马尔可夫链中模拟了分布。为了获得边际可能性的重要性采样估计,AIS引入了扩展的目标分布,以重新持续马尔可夫链提案。尽管已经大量努力通过更改AIS使用的提案分布,通过更改中间分布和相应的马尔可夫内核,但不被评估的问题是AIS使用方便但次优的扩展目标分布。这可能会阻碍其性能。我们在这里利用基于分数的生成建模(SGM)的最新进展来近似与Langevin和Hamiltonian Dynamics离散化相对应的AIS建议的最佳扩展目标分布。我们在许多合成基准分布和变异自动编码器上展示了这些新颖的,可区分的AIS程序。
translated by 谷歌翻译
许多方法都存在基于未经调整的Langevin过渡的强大变分分布的方法。其中大多数是使用多种不同方法和技术开发的。不幸的是,缺乏统一的分析和推导使开发新方法和关于现有方法的推理成为具有挑战性的任务。我们解决了这一分析,该分析统一并概括了这些现有技术。主要思想是通过数值模拟阻尼不足的Langevin扩散过程及其时间逆转来增强目标和变异性。这种方法的好处是双重的:它为许多现有方法提供了统一的配方,并简化了新的方法。实际上,使用我们的公式,我们提出了一种结合先前现有算法的优势的新方法。它使用了不足的Langevin过渡和通过分数网络参数参数的强大增强。我们的经验评估表明,我们提出的方法在广泛的任务中始终优于相关基线。
translated by 谷歌翻译
Perturb-and-MAP offers an elegant approach to approximately sample from an energy-based model (EBM) by computing the maximum-a-posteriori (MAP) configuration of a perturbed version of the model. Sampling in turn enables learning. However, this line of research has been hindered by the general intractability of the MAP computation. Very few works venture outside tractable models, and when they do, they use linear programming approaches, which as we show, have several limitations. In this work, we present perturb-and-max-product (PMP), a parallel and scalable mechanism for sampling and learning in discrete EBMs. Models can be arbitrary as long as they are built using tractable factors. We show that (a) for Ising models, PMP is orders of magnitude faster than Gibbs and Gibbs-with-Gradients (GWG) at learning and generating samples of similar or better quality; (b) PMP is able to learn and sample from RBMs; (c) in a large, entangled graphical model in which Gibbs and GWG fail to mix, PMP succeeds.Preprint. Under review.
translated by 谷歌翻译