去核扩散模型最近已成为强大的生成模型类别。它们提供最新的结果,不仅用于无条件模拟,而且还提供了解决在各种反问题中产生的条件模拟问题时。这些模型的一个局限性在于它们在生成时间上是计算密集型的,因为它们需要长期模拟扩散过程。进行无条件的模拟时,Schr \“生成建模的Odinger桥式公式会导致理论上接地的算法缩短生成时间,这与其他提出的加速技术互补。我们将Schr \'Edinger桥式桥式扩展到条件模拟。我们在各种应用程序上演示了这种新颖的方法,包括图像超分辨率,状态空间模型的最佳过滤以及预训练的网络的完善。我们的代码可以在https://github.com/vdeborto/cdsb上找到。
translated by 谷歌翻译
逐步应用高斯噪声将复杂的数据分布转换为大约高斯。逆转此动态定义了一种生成模型。当前进通知过程由随机微分方程(SDE),Song等人提供。 (2021)证明可以使用分数匹配估计相关反向时间SDE的时间不均匀漂移。这种方法的限制是必须在最终分布到高斯的最终分布必须运行前进时间SDE。相反,解决Schr \“odinger桥问题(SB),即路径空间上的熵正常化的最佳运输问题,产生从有限时间内从数据分布产生样本的扩散。我们存在扩散SB(DSB),原始近似迭代比例拟合(IPF)程序来解决SB问题,并提供理论分析以及生成建模实验。第一个DSB迭代恢复Song等人提出的方法。(2021),使用较短时间的灵活性间隔,随后的DSB迭代减少了前进(RESP。后向)SDE的最终时间边际之间的差异,相对于先前(RESP。数据)分布。除了生成的建模之外,DSB提供了广泛适用的计算最优运输工具流行池算法的连续状态空间模拟(Cuturi,2013)。
translated by 谷歌翻译
Denoising diffusions are state-of-the-art generative models which exhibit remarkable empirical performance and come with theoretical guarantees. The core idea of these models is to progressively transform the empirical data distribution into a simple Gaussian distribution by adding noise using a diffusion. We obtain new samples whose distribution is close to the data distribution by simulating a "denoising" diffusion approximating the time reversal of this "noising" diffusion. This denoising diffusion relies on approximations of the logarithmic derivatives of the noised data densities, known as scores, obtained using score matching. Such models can be easily extended to perform approximate posterior simulation in high-dimensional scenarios where one can only sample from the prior and simulate synthetic observations from the likelihood. These methods have been primarily developed for data on $\mathbb{R}^d$ while extensions to more general spaces have been developed on a case-by-case basis. We propose here a general framework which not only unifies and generalizes this approach to a wide class of spaces but also leads to an original extension of score matching. We illustrate the resulting class of denoising Markov models on various applications.
translated by 谷歌翻译
引入后二十年多,退火重要性采样(AIS)仍然是边际可能性估计的最有效方法之一。它依赖于一系列分布序列在可聊天的初始分布和利益的目标分布之间插值,我们从大约使用非均匀的马尔可夫链中模拟了分布。为了获得边际可能性的重要性采样估计,AIS引入了扩展的目标分布,以重新持续马尔可夫链提案。尽管已经大量努力通过更改AIS使用的提案分布,通过更改中间分布和相应的马尔可夫内核,但不被评估的问题是AIS使用方便但次优的扩展目标分布。这可能会阻碍其性能。我们在这里利用基于分数的生成建模(SGM)的最新进展来近似与Langevin和Hamiltonian Dynamics离散化相对应的AIS建议的最佳扩展目标分布。我们在许多合成基准分布和变异自动编码器上展示了这些新颖的,可区分的AIS程序。
translated by 谷歌翻译
基于得分的扩散模型已成为深度生成型号最有前途的框架之一。在这项工作中,我们对基于得分的扩散模型进行了学习条件概率分布的不同方法的系统比较和理论分析。特别是,我们证明了结果为条件分数最成功的估算之一提供了理论典范。此外,我们引入了多速扩散框架,这导致了一个新的估算器,用于条件得分,与先前的最先进的方法相提并论。我们的理论和实验结果伴随着开源库MSDIFF,允许应用和进一步研究多速扩散模型。
translated by 谷歌翻译
扩散模型已成为深层生成建模的最有希望的框架之一。在这项工作中,我们探讨了不均匀扩散模型的潜力。我们表明,非均匀扩散会导致多尺度扩散模型,这些模型与多尺度归一化流的结构相似。我们从实验上发现,在相同或更少的训练时间中,多尺度扩散模型比标准均匀扩散模型获得更好的FID得分。更重要的是,它生成样品$ 4.4 $ 4.4美元的$ 4.4 $ $ 128 \ times 128 $分辨率。在使用更多量表的较高分辨率中,预计加速度将更高。此外,我们表明,不均匀的扩散导致有条件得分函数的新估计量,该估计函数以最新的条件降解估计量以PAR性能达到了PAR性能。我们的理论和实验性发现伴随着开源库MSDIFF,可以促进对非均匀扩散模型的进一步研究。
translated by 谷歌翻译
Schr \“ Odinger Bridge(SB)是一个熵调控的最佳运输问题,与基于评分的生成模型(SGM)相比,在深层生成模型中,人们对其数学灵活性受到了越来越多的关注。但是,是否尚不清楚优化原理是否仍然不清楚SB的涉及深层生成模型的现代培训,这些模型通常依赖于构建对数类似目标的目标。这提出了有关SB模型作为生成应用的原则替代方案的问题。在这项工作中,我们提供了一个新颖的计算框架,用于基于前向后的随机微分方程理论的SB模型的似然训练 - 随机最佳控制中出现了一种数学方法论,将SB的最佳条件转换为一组SDE。至关重要的是,这些SDE可用于构建SB的SB目标目标,以构建SB的可能性目标。令人惊讶的是,这将SGM的特殊情况概括为特殊情况。这导致了新的Opmimi Zation原理继承了相同的SB最优性,但并没有失去现代生成训练技术的应用,我们表明所得的训练算法在生成MNIST,CEELBA和CIFAR10的现实图像方面取得了可比的结果。我们的代码可在https://github.com/ghliu/sb-fbsde上找到。
translated by 谷歌翻译
基于得分的生成模型在密度估计和生成建模任务上表现出最新的性能。这些模型通常假设数据几何形状是平坦的,但已开发出最近的扩展来合成生活在Riemannian歧管上的数据。现有的加速扩散模型采样方法通常不适用于Riemannian设置,基于Riemannian得分的方法尚未适应数据集插值的重要任务。为了克服这些问题,我们介绍了\ emph {riemannian扩散schr \“ odinger桥}。我们提出的方法概括了扩散的schr \“ \ cite {debortoli2021neurips}中引入的odinger桥,向非欧国性分数设置超出了Riemannian Score的模型,并扩展第一次逆转。我们验证我们提出的关于合成数据以及真实地球和气候数据的方法。
translated by 谷歌翻译
尽管存在扩散模型的各种变化,但将线性扩散扩散到非线性扩散过程中仅由几项作品研究。非线性效应几乎没有被理解,但是直觉上,将有更多有希望的扩散模式来最佳地训练生成分布向数据分布。本文介绍了基于分数扩散模型的数据自适应和非线性扩散过程。提出的隐式非线性扩散模型(INDM)通过结合归一化流量和扩散过程来学习非线性扩散过程。具体而言,INDM通过通过流网络利用\ textIt {litex {litex {littent Space}的线性扩散来隐式构建\ textIt {data Space}的非线性扩散。由于非线性完全取决于流网络,因此该流网络是形成非线性扩散的关键。这种灵活的非线性是针对DDPM ++的非MLE训练,将INDM的学习曲线提高到了几乎最大的似然估计(MLE)训练,事实证明,这是具有身份流量的INDM的特殊情况。同样,训练非线性扩散可以通过离散的步骤大小产生采样鲁棒性。在实验中,INDM实现了Celeba的最新FID。
translated by 谷歌翻译
基于分数的生成模型(SGMS)已经证明了显着的合成质量。 SGMS依赖于扩散过程,逐渐将数据逐渐渗透到贸易分布,而生成式模型则学会去噪。除了数据分布本身,这种去噪任务的复杂性是由扩散过程独特地确定的。我们认为当前的SGMS采用过于简单的扩散,导致不必要的复杂的去噪流程,限制了生成的建模性能。根据与统计力学的联系,我们提出了一种新型危及阻尼Langevin扩散(CLD),并表明基于CLD的SGMS实现了优异的性能。 CLD可以被解释为在扩展空间中运行关节扩散,其中辅助变量可以被视为耦合到数据变量的“速度”,如Hamiltonian动态。我们推导了一种用于CLD的小说得分匹配目标,并表明该模型仅需要了解给定数据的速度分布的条件分布的得分函数,而不是直接学习数据的分数。我们还导出了一种新的采样方案,用于从基于CLD的扩散模型有效合成。我们发现CLD在类似的网络架构和采样计算预算中优于综合质量的先前SGM。我们展示我们的CLD的新型采样器显着优于欧拉 - 玛雅山等求解器。我们的框架为基于刻痕的去噪扩散模型提供了新的见解,并且可以随时用于高分辨率图像合成。项目页面和代码:https://nv-tlabs.github.io/cld-sgm。
translated by 谷歌翻译
DeNoising扩散模型代表了计算机视觉中最新的主题,在生成建模领域表现出了显着的结果。扩散模型是一个基于两个阶段的深层生成模型,一个正向扩散阶段和反向扩散阶段。在正向扩散阶段,通过添加高斯噪声,输入数据在几个步骤中逐渐受到干扰。在反向阶段,模型的任务是通过学习逐步逆转扩散过程来恢复原始输入数据。尽管已知的计算负担,即由于采样过程中涉及的步骤数量,扩散模型对生成样品的质量和多样性得到了广泛赞赏。在这项调查中,我们对视觉中应用的denoising扩散模型的文章进行了全面综述,包括该领域的理论和实际贡献。首先,我们识别并介绍了三个通用扩散建模框架,这些框架基于扩散概率模型,噪声调节得分网络和随机微分方程。我们进一步讨论了扩散模型与其他深层生成模型之间的关系,包括变异自动编码器,生成对抗网络,基于能量的模型,自回归模型和正常流量。然后,我们介绍了计算机视觉中应用的扩散模型的多角度分类。最后,我们说明了扩散模型的当前局限性,并设想了一些有趣的未来研究方向。
translated by 谷歌翻译
去噪扩散概率模型(DDPMS)在没有对抗性训练的情况下实现了高质量的图像生成,但它们需要模拟Markov链以产生样品的许多步骤。为了加速采样,我们呈现去噪扩散隐式模型(DDIM),更有效的迭代类隐式概率模型,具有与DDPM相同的培训过程。在DDPMS中,生成过程被定义为Markovian扩散过程的反向。我们构建一类导致相同的训练目标的非马尔可瓦夫扩散过程,但其反向过程可能会更快地采样。我们经验证明,与DDPM相比,DDIM可以生产高质量的样本10倍以上$ 50 \时间$ 50 \倍。允许我们缩小对样本质量的计算,并可以直接执行语义有意义的图像插值潜在的空间。
translated by 谷歌翻译
我们考虑模拟扩散桥的问题,即被调节以在两个给定的状态下初始化和终止的扩散过程。扩散桥梁仿真在不同的科学领域具有应用,并对离散观察的扩散的统计推断起着至关重要的作用。众所周知,这是一个有挑战性的问题,在过去的二十年里受到了很多关注。在这项工作中,我们首先表明,如果可以在时间反转无条件的扩散过程,则可以模拟时间反转的扩散桥接过程。我们介绍了一个变分制剂,以了解这一依赖于得分匹配方法以规避诡计的逆转性。然后,我们考虑另一次迭代我们提出的方法,以近似Dooob的$ H $ -transform定义扩散桥过程。由于我们的方法通常适用于潜在的扩散过程的温和假设,因此可以轻松地用于改善现有方法和框架内的提案桥接过程。我们讨论算法考虑和扩展,并呈现一些数值结果。
translated by 谷歌翻译
基于得分的扩散模型是一类生成模型,其动力学由将噪声映射到数据中的随机微分方程描述。尽管最近的作品已经开始为这些模型奠定理论基础,但仍缺乏对扩散时间t的作用的分析理解。当前的最佳实践提倡大型T,以确保正向动力学使扩散足够接近已知和简单的噪声分布。但是,对于更好的分数匹配目标和更高的计算效率,应优选较小的t值。从扩散模型的各种解释开始,在这项工作中,我们量化了这一权衡,并提出了一种新方法,通过采用较小的扩散时间来提高培训和采样的质量和效率。实际上,我们展示了如何使用辅助模型来弥合理想和模拟正向动力学之间的间隙,然后进行标准的反向扩散过程。经验结果支持我们的分析;对于图像数据,我们的方法是竞争性W.R.T.根据标准样本质量指标和对数可能的样本。
translated by 谷歌翻译
标准化流动,扩散归一化流量和变形自动置换器是强大的生成模型。在本文中,我们提供了一个统一的框架来通过马尔可夫链处理这些方法。实际上,我们考虑随机标准化流量作为一对马尔可夫链,满足一些属性,并表明许多用于数据生成的最先进模型适合该框架。马尔可夫链的观点使我们能够将确定性层作为可逆的神经网络和随机层作为大都会加速层,Langevin层和变形自身偏移,以数学上的声音方式。除了具有Langevin层的密度的层,扩散层或变形自身形式,也可以处理与确定性层或大都会加热器层没有密度的层。因此,我们的框架建立了一个有用的数学工具来结合各种方法。
translated by 谷歌翻译
我们提出了整流的流程,这是一种令人惊讶的简单学习方法(神经)的普通微分方程(ODE)模型,用于在两个经验观察到的分布\ pi_0和\ pi_1之间运输,因此为生成建模和域转移提供了统一的解决方案,以及其他各种任务。涉及分配运输。整流流的想法是学习ode,以遵循尽可能多的连接从\ pi_0和\ pi_1的直径。这是通过解决直接的非线性最小二乘优化问题来实现的,该问题可以轻松地缩放到大型模型,而无需在标准监督学习之外引入额外的参数。直径是特殊的,因此是特殊的,因为它们是两个点之间的最短路径,并且可以精确模拟而无需时间离散,因此可以在计算上产生高效的模型。我们表明,从数据(称为整流)中学习的整流流的过程将\ pi_0和\ pi_1的任意耦合转变为新的确定性耦合,并证明是非侵入的凸面运输成本。此外,递归应用矫正使我们能够获得具有越来越直的路径的流动序列,可以在推理阶段进行粗略的时间离散化来准确地模拟。在实证研究中,我们表明,整流流对图像产生,图像到图像翻译和域的适应性表现出色。特别是,在图像生成和翻译上,我们的方法几乎产生了几乎直流的流,即使是单个Euler离散步骤,也会产生高质量的结果。
translated by 谷歌翻译
基于得分的生成模型(SGM)通过运行时间转移的随机微分方程(SDE)从高斯白噪声中合成新数据样本,其漂移系数取决于某些概率分数。此类SDE的离散化通常需要大量的时间步骤,因此需要高计算成本。这是因为我们通过数学分析的分数的不良条件特性。我们表明,通过将数据分布分配到跨尺度的小波系数的条件概率的产物中,可以将SGMS大大加速。最终的小波得分生成模型(WSGM)在所有尺度上都以相同的时间步长合成小波系数,因此其时间复杂性随着图像大小而线性增长。这在数学上是在高斯分布上证明的,并在相变和自然图像数据集中的物理过程上以数值显示。
translated by 谷歌翻译
在概率密度范围内相对于Wassersein度量的空间的梯度流程通常具有很好的特性,并且已在几种机器学习应用中使用。计算Wasserstein梯度流量的标准方法是有限差异,使网格上的基础空间离散,并且不可扩展。在这项工作中,我们提出了一种可扩展的近端梯度型算法,用于Wassersein梯度流。我们的方法的关键是目标函数的变分形式,这使得可以通过引流 - 双重优化实现JKO近端地图。可以通过替代地更新内部和外环中的参数来有效地解决该原始问题。我们的框架涵盖了包括热方程和多孔介质方程的所有经典Wasserstein梯度流。我们展示了若干数值示例的算法的性能和可扩展性。
translated by 谷歌翻译
自Venkatakrishnan等人的开创性工作以来。 2013年,即插即用(PNP)方法在贝叶斯成像中变得普遍存在。这些方法通过将显式似然函数与预定由图像去噪算法隐式定义的明确定义,导出用于成像中的逆问题的最小均方误差(MMSE)或最大后验误差(MAP)估计器。文献中提出的PNP算法主要不同于他们用于优化或采样的迭代方案。在优化方案的情况下,一些最近的作品能够保证收敛到一个定点,尽管不一定是地图估计。在采样方案的情况下,据我们所知,没有已知的收敛证明。关于潜在的贝叶斯模型和估算器是否具有明确定义,良好的良好,并且具有支持这些数值方案所需的基本规律性属性,还存在重要的开放性问题。为了解决这些限制,本文开发了用于对PNP前锋进行贝叶斯推断的理论,方法和可忽略的会聚算法。我们介绍了两个算法:1)PNP-ULA(未调整的Langevin算法),用于蒙特卡罗采样和MMSE推断; 2)PNP-SGD(随机梯度下降)用于MAP推理。利用Markov链的定量融合的最新结果,我们为这两种算法建立了详细的收敛保证,在现实假设下,在去噪运营商使用的现实假设下,特别注意基于深神经网络的遣散者。我们还表明这些算法大致瞄准了良好的决策理论上最佳的贝叶斯模型。所提出的算法在几种规范问题上证明了诸如图像去纹,染色和去噪,其中它们用于点估计以及不确定的可视化和量化。
translated by 谷歌翻译
过去的几年见证了扩散模型〜(DMS)在生成建模任务中生成高保真样本方面取得的巨大成功。 DM的主要局限性是其臭名昭著的缓慢采样程序,通常需要数百到数千至数千个的时间离散步骤,以达到所需的准确性。我们的目标是为DMS开发快速采样方法,该方法的步骤少得多,同时保留了高样本质量。为此,我们系统地分析了DMS中的采样程序,并确定影响样本质量的关键因素,其中离散化方法至关重要。通过仔细检查学习的扩散过程,我们提出了扩散指数积分取样器〜(DEIS)。它基于设计用于离散的普通微分方程(ODE)的指数积分器,并利用学习扩散过程的半线性结构来减少离散误差。所提出的方法可以应用于任何DMS,并可以在短短10个步骤中生成高保真样本。在我们的实验中,一个A6000 GPU大约需要3分钟才能从CIFAR10产生$ 50K $的图像。此外,通过直接使用预训练的DMS,当得分函数评估的数量〜(NFE)的数量有限时,我们实现了最先进的采样性能,例如,使用10 NFES,3.37 FID和9.74的4.17 FID,仅为9.74 CIFAR10上的15个NFE。代码可从https://github.com/qsh-zh/deis获得
translated by 谷歌翻译