基于得分的生成模型在密度估计和生成建模任务上表现出最新的性能。这些模型通常假设数据几何形状是平坦的,但已开发出最近的扩展来合成生活在Riemannian歧管上的数据。现有的加速扩散模型采样方法通常不适用于Riemannian设置,基于Riemannian得分的方法尚未适应数据集插值的重要任务。为了克服这些问题,我们介绍了\ emph {riemannian扩散schr \“ odinger桥}。我们提出的方法概括了扩散的schr \“ \ cite {debortoli2021neurips}中引入的odinger桥,向非欧国性分数设置超出了Riemannian Score的模型,并扩展第一次逆转。我们验证我们提出的关于合成数据以及真实地球和气候数据的方法。
translated by 谷歌翻译
逐步应用高斯噪声将复杂的数据分布转换为大约高斯。逆转此动态定义了一种生成模型。当前进通知过程由随机微分方程(SDE),Song等人提供。 (2021)证明可以使用分数匹配估计相关反向时间SDE的时间不均匀漂移。这种方法的限制是必须在最终分布到高斯的最终分布必须运行前进时间SDE。相反,解决Schr \“odinger桥问题(SB),即路径空间上的熵正常化的最佳运输问题,产生从有限时间内从数据分布产生样本的扩散。我们存在扩散SB(DSB),原始近似迭代比例拟合(IPF)程序来解决SB问题,并提供理论分析以及生成建模实验。第一个DSB迭代恢复Song等人提出的方法。(2021),使用较短时间的灵活性间隔,随后的DSB迭代减少了前进(RESP。后向)SDE的最终时间边际之间的差异,相对于先前(RESP。数据)分布。除了生成的建模之外,DSB提供了广泛适用的计算最优运输工具流行池算法的连续状态空间模拟(Cuturi,2013)。
translated by 谷歌翻译
去核扩散模型最近已成为强大的生成模型类别。它们提供最新的结果,不仅用于无条件模拟,而且还提供了解决在各种反问题中产生的条件模拟问题时。这些模型的一个局限性在于它们在生成时间上是计算密集型的,因为它们需要长期模拟扩散过程。进行无条件的模拟时,Schr \“生成建模的Odinger桥式公式会导致理论上接地的算法缩短生成时间,这与其他提出的加速技术互补。我们将Schr \'Edinger桥式桥式扩展到条件模拟。我们在各种应用程序上演示了这种新颖的方法,包括图像超分辨率,状态空间模型的最佳过滤以及预训练的网络的完善。我们的代码可以在https://github.com/vdeborto/cdsb上找到。
translated by 谷歌翻译
Denoising diffusions are state-of-the-art generative models which exhibit remarkable empirical performance and come with theoretical guarantees. The core idea of these models is to progressively transform the empirical data distribution into a simple Gaussian distribution by adding noise using a diffusion. We obtain new samples whose distribution is close to the data distribution by simulating a "denoising" diffusion approximating the time reversal of this "noising" diffusion. This denoising diffusion relies on approximations of the logarithmic derivatives of the noised data densities, known as scores, obtained using score matching. Such models can be easily extended to perform approximate posterior simulation in high-dimensional scenarios where one can only sample from the prior and simulate synthetic observations from the likelihood. These methods have been primarily developed for data on $\mathbb{R}^d$ while extensions to more general spaces have been developed on a case-by-case basis. We propose here a general framework which not only unifies and generalizes this approach to a wide class of spaces but also leads to an original extension of score matching. We illustrate the resulting class of denoising Markov models on various applications.
translated by 谷歌翻译
我们考虑模拟扩散桥的问题,即被调节以在两个给定的状态下初始化和终止的扩散过程。扩散桥梁仿真在不同的科学领域具有应用,并对离散观察的扩散的统计推断起着至关重要的作用。众所周知,这是一个有挑战性的问题,在过去的二十年里受到了很多关注。在这项工作中,我们首先表明,如果可以在时间反转无条件的扩散过程,则可以模拟时间反转的扩散桥接过程。我们介绍了一个变分制剂,以了解这一依赖于得分匹配方法以规避诡计的逆转性。然后,我们考虑另一次迭代我们提出的方法,以近似Dooob的$ H $ -transform定义扩散桥过程。由于我们的方法通常适用于潜在的扩散过程的温和假设,因此可以轻松地用于改善现有方法和框架内的提案桥接过程。我们讨论算法考虑和扩展,并呈现一些数值结果。
translated by 谷歌翻译
Schr \“ Odinger Bridge(SB)是一个熵调控的最佳运输问题,与基于评分的生成模型(SGM)相比,在深层生成模型中,人们对其数学灵活性受到了越来越多的关注。但是,是否尚不清楚优化原理是否仍然不清楚SB的涉及深层生成模型的现代培训,这些模型通常依赖于构建对数类似目标的目标。这提出了有关SB模型作为生成应用的原则替代方案的问题。在这项工作中,我们提供了一个新颖的计算框架,用于基于前向后的随机微分方程理论的SB模型的似然训练 - 随机最佳控制中出现了一种数学方法论,将SB的最佳条件转换为一组SDE。至关重要的是,这些SDE可用于构建SB的SB目标目标,以构建SB的可能性目标。令人惊讶的是,这将SGM的特殊情况概括为特殊情况。这导致了新的Opmimi Zation原理继承了相同的SB最优性,但并没有失去现代生成训练技术的应用,我们表明所得的训练算法在生成MNIST,CEELBA和CIFAR10的现实图像方面取得了可比的结果。我们的代码可在https://github.com/ghliu/sb-fbsde上找到。
translated by 谷歌翻译
连续归一化流(CNF)是一类生成模型,可以通过求解普通的微分方程(ODE)将先验分布转换为模型分布。我们建议通过最大程度地减少概率路径差异(PPD)来训练CNF,这是CNF产生的概率密度路径与目标概率密度路径之间的新型差异家族。 PPD是使用对数质量保护公式制定的,该公式是线性的一阶部分微分方程,将对数目标概率和CNF的定义向量场进行配方。 PPD比现有方法具有多个关键好处:它避免了在迭代中解决颂歌的需求,很容易应用于歧管数据,比例到高维度,并与大型目标路径兼容,该目标路径在有限的时间内插值纯噪声和数据。从理论上讲,PPD显示为结合经典概率差异。从经验上讲,我们表明,通过最小化PPD实现最新的CNF在现有的低维歧管基准上获得了最新的可能性和样品质量,并且是生成模型以扩展到中度高维歧管的第一个示例。
translated by 谷歌翻译
尽管存在扩散模型的各种变化,但将线性扩散扩散到非线性扩散过程中仅由几项作品研究。非线性效应几乎没有被理解,但是直觉上,将有更多有希望的扩散模式来最佳地训练生成分布向数据分布。本文介绍了基于分数扩散模型的数据自适应和非线性扩散过程。提出的隐式非线性扩散模型(INDM)通过结合归一化流量和扩散过程来学习非线性扩散过程。具体而言,INDM通过通过流网络利用\ textIt {litex {litex {littent Space}的线性扩散来隐式构建\ textIt {data Space}的非线性扩散。由于非线性完全取决于流网络,因此该流网络是形成非线性扩散的关键。这种灵活的非线性是针对DDPM ++的非MLE训练,将INDM的学习曲线提高到了几乎最大的似然估计(MLE)训练,事实证明,这是具有身份流量的INDM的特殊情况。同样,训练非线性扩散可以通过离散的步骤大小产生采样鲁棒性。在实验中,INDM实现了Celeba的最新FID。
translated by 谷歌翻译
扩散模型是图像产生和似然估计的最新方法。在这项工作中,我们将连续的时间扩散模型推广到任意的Riemannian流形,并得出了可能性估计的变异框架。在计算上,我们提出了计算可能性估计中需要的黎曼分歧的新方法。此外,在概括欧几里得案例时,我们证明,最大化该变异的下限等效于Riemannian得分匹配。从经验上讲,我们证明了Riemannian扩散模型在各种光滑的歧管上的表达能力,例如球体,Tori,双曲线和正交组。我们提出的方法在所有基准测试基准上实现了新的最先进的可能性。
translated by 谷歌翻译
我们对通过歧管(例如球形,Tori和其他隐式表面)描述的复杂几何形状的学习生成模型感兴趣。现有(欧几里德)生成模型的当前延伸仅限于特定几何形状,并且通常遭受高计算成本。我们介绍了Moser Flow(MF),是连续标准化流量(CNF)系列内的一类新的生成型号。 MF还通过解决方案产生CNF,然而,与其他CNF方法不同,其模型(学习)密度被参数化,因为源(先前)密度减去神经网络(NN)的发散。分歧是局部线性差分操作员,易于近似和计算歧管。因此,与其他CNFS不同,MF不需要在训练期间通过颂歌求解器调用或反向。此外,将模型密度明确表示为NN的发散而不是作为颂歌的解决方案有助于学习高保真密度。从理论上讲,我们证明了MF在合适的假设下构成了通用密度近似器。经验上,我们首次证明了流动模型的使用从一般曲面采样,并在挑战地球和气候的挑战性几何形状和现实世界基准中实现了密度估计,样本质量和培训复杂性的显着改善科学。
translated by 谷歌翻译
Denoisis扩散模型是最近在图像和音频合成中表现出最新性能的生成模型。这样的模型近似从目标分布到参考密度(通常是高斯)的正向噪声过程的时间反转。尽管有很强的经验结果,但对此类模型的理论分析仍然有限。特别是,所有当前方法都至关重要地假设目标密度允许密度W.R.T.Lebesgue度量。这不涵盖在较低维歧管上支持目标分布或通过某些经验分布给出的设置。在本文中,我们通过在更通用的环境中为扩散模型提供第一个收敛结果来弥合这一差距。特别是,我们在目标数据分布与扩散模型的生成分布之间的订单距离距离距离范围距离上提供了定量界限。
translated by 谷歌翻译
在这里,我们提出了一种称为歧管插值最佳传输流量(MIOFLOW)的方法,该方法从零星时间点上采集的静态快照样品中学习随机,连续的种群动力学。 Mioflow结合了动态模型,流动学习和通过训练神经普通微分方程(神经ode)的最佳运输,以在静态种群快照之间插值,以通过具有歧管地面距离的最佳运输来惩罚。此外,我们通过在自动编码器的潜在空间中运行我们称为Geodesic AutoCododer(GAE)来确保流量遵循几何形状。在GAE中,正规化了点之间的潜在空间距离,以匹配我们定义的数据歧管上的新型多尺度测量距离。我们表明,这种方法优于正常流,Schr \“ Odinger Bridges和其他旨在根据人群之间插值的噪声流向数据的生成模型。从理论上讲,我们将这些轨迹与动态最佳运输联系起来。我们评估了我们的评估使用分叉和合并的模拟数据,以及来自胚胎身体分化和急性髓样白血病的SCRNA-SEQ数据。
translated by 谷歌翻译
基于得分的扩散模型是一类生成模型,其动力学由将噪声映射到数据中的随机微分方程描述。尽管最近的作品已经开始为这些模型奠定理论基础,但仍缺乏对扩散时间t的作用的分析理解。当前的最佳实践提倡大型T,以确保正向动力学使扩散足够接近已知和简单的噪声分布。但是,对于更好的分数匹配目标和更高的计算效率,应优选较小的t值。从扩散模型的各种解释开始,在这项工作中,我们量化了这一权衡,并提出了一种新方法,通过采用较小的扩散时间来提高培训和采样的质量和效率。实际上,我们展示了如何使用辅助模型来弥合理想和模拟正向动力学之间的间隙,然后进行标准的反向扩散过程。经验结果支持我们的分析;对于图像数据,我们的方法是竞争性W.R.T.根据标准样本质量指标和对数可能的样本。
translated by 谷歌翻译
扩散模型的最新进展带来了图像生成任务的最新性能。然而,扩散模型的先前研究的经验结果意味着密度估计与样品产生性能之间存在逆相关性。本文研究了足够的经验证据,表明这种反相关发生,因为密度估计值显着造成了较小的扩散时间的贡献,而样品产生主要取决于大扩散时间。但是,在整个扩散时间内训练得分网络良好,因为损耗量表在每个扩散时间都显着不平衡。因此,为了成功训练,我们引入了软截断,这是一种普遍适用的扩散模型训练技术,将固定和静态截断的超参数软化为随机变量。在实验中,软截断可在CIFAR-10,Celeba,Celeba-HQ 256X256和STL-10数据集上实现最先进的性能。
translated by 谷歌翻译
过去的几年见证了扩散模型〜(DMS)在生成建模任务中生成高保真样本方面取得的巨大成功。 DM的主要局限性是其臭名昭著的缓慢采样程序,通常需要数百到数千至数千个的时间离散步骤,以达到所需的准确性。我们的目标是为DMS开发快速采样方法,该方法的步骤少得多,同时保留了高样本质量。为此,我们系统地分析了DMS中的采样程序,并确定影响样本质量的关键因素,其中离散化方法至关重要。通过仔细检查学习的扩散过程,我们提出了扩散指数积分取样器〜(DEIS)。它基于设计用于离散的普通微分方程(ODE)的指数积分器,并利用学习扩散过程的半线性结构来减少离散误差。所提出的方法可以应用于任何DMS,并可以在短短10个步骤中生成高保真样本。在我们的实验中,一个A6000 GPU大约需要3分钟才能从CIFAR10产生$ 50K $的图像。此外,通过直接使用预训练的DMS,当得分函数评估的数量〜(NFE)的数量有限时,我们实现了最先进的采样性能,例如,使用10 NFES,3.37 FID和9.74的4.17 FID,仅为9.74 CIFAR10上的15个NFE。代码可从https://github.com/qsh-zh/deis获得
translated by 谷歌翻译
基于分数的生成模型(SGMS)已经证明了显着的合成质量。 SGMS依赖于扩散过程,逐渐将数据逐渐渗透到贸易分布,而生成式模型则学会去噪。除了数据分布本身,这种去噪任务的复杂性是由扩散过程独特地确定的。我们认为当前的SGMS采用过于简单的扩散,导致不必要的复杂的去噪流程,限制了生成的建模性能。根据与统计力学的联系,我们提出了一种新型危及阻尼Langevin扩散(CLD),并表明基于CLD的SGMS实现了优异的性能。 CLD可以被解释为在扩展空间中运行关节扩散,其中辅助变量可以被视为耦合到数据变量的“速度”,如Hamiltonian动态。我们推导了一种用于CLD的小说得分匹配目标,并表明该模型仅需要了解给定数据的速度分布的条件分布的得分函数,而不是直接学习数据的分数。我们还导出了一种新的采样方案,用于从基于CLD的扩散模型有效合成。我们发现CLD在类似的网络架构和采样计算预算中优于综合质量的先前SGM。我们展示我们的CLD的新型采样器显着优于欧拉 - 玛雅山等求解器。我们的框架为基于刻痕的去噪扩散模型提供了新的见解,并且可以随时用于高分辨率图像合成。项目页面和代码:https://nv-tlabs.github.io/cld-sgm。
translated by 谷歌翻译
基于分数的生成模型在发电质量和可能性方面具有出色的性能。他们通过将参数化的分数网络与一阶数据得分功能匹配来建模数据分布。分数网络可用于定义ODE(“基于得分的扩散ode”),以进行精确的似然评估。但是,颂歌的可能性与得分匹配目标之间的关系尚不清楚。在这项工作中,我们证明,匹配一阶得分不足以通过在最大可能性和分数匹配目标之间显示差距来最大化ode的可能性。为了填补这一空白,我们表明,可以通过控制第一,第二和三阶得分匹配错误来界定颂歌的负可能性;我们进一步提出了一种新型的高阶denoising评分匹配方法,以实现基于得分的扩散ODE的最大似然训练。我们的算法确保高阶匹配误差受训练错误和较低级错误的限制。我们从经验上观察到,通过高阶匹配,基于得分的扩散频率在合成数据和CIFAR-10上都具有更好的可能性,同时保留了高生成质量。
translated by 谷歌翻译
扩散(基于得分)生成模型已被广泛用于建模各种类型的复杂数据,包括图像,音频和点云。最近,已经揭示了前向后的随机微分方程(SDE)和基于扩散的模型之间的深厚连接,并提出了几种新的SDE变体(例如,Sub-VP,批判性抑制的Langevin)。尽管手工制作的固定前进SDE取得了经验成功,但仍未探索大量适当的正向SDE。在这项工作中,我们提出了一个通用框架,用于参数化扩散模型,尤其是正向SDE的空间部分。引入了一种抽象的形式主义,并具有理论保证,并且它与以前的扩散模型的联系得到了利用。我们从优化的角度展示了我们方法的理论优势。还提出了关于合成数据集,矿工和CIFAR10的数值实验,以验证我们框架的有效性。
translated by 谷歌翻译
基于分数的生成模型(SGM)需要近似中间分布的分数$ \ nabla \ log p_t $以及前进过程的最终分布$ p_t $。这些近似值的理论基础仍然缺乏。我们发现SGM能够从基础(低维)数据歧管$ \ MATHCAL {M} $中产生样本的精确条件。这确保我们能够生成“正确的样本”。例如,以$ \ mathcal {m} $作为面部图像的子集,我们发现SGM稳健产生面部图像的条件,即使这些图像的相对频率可能无法准确表示真实数据生成分布。此外,该分析是了解SGMS的概括属性的第一步:采用$ \ Mathcal {M} $作为所有培训样本的集合,我们的结果提供了SGM何时记住其培训数据的精确描述。
translated by 谷歌翻译
去噪扩散概率模型(DDPMS)在没有对抗性训练的情况下实现了高质量的图像生成,但它们需要模拟Markov链以产生样品的许多步骤。为了加速采样,我们呈现去噪扩散隐式模型(DDIM),更有效的迭代类隐式概率模型,具有与DDPM相同的培训过程。在DDPMS中,生成过程被定义为Markovian扩散过程的反向。我们构建一类导致相同的训练目标的非马尔可瓦夫扩散过程,但其反向过程可能会更快地采样。我们经验证明,与DDPM相比,DDIM可以生产高质量的样本10倍以上$ 50 \时间$ 50 \倍。允许我们缩小对样本质量的计算,并可以直接执行语义有意义的图像插值潜在的空间。
translated by 谷歌翻译