标准化流是构建概率和生成模型的流行方法。但是,由于需要计算雅各布人的计算昂贵决定因素,因此对流量的最大似然训练是具有挑战性的。本文通过引入一种受到两样本测试启发的流动训练的方法来解决这一挑战。我们框架的核心是能源目标,这是适当评分规则的多维扩展,该规则基于随机预测,可以接受有效的估计器,并且超过了一系列可以在我们的框架中得出的替代两样本目标。至关重要的是,能量目标及其替代方案不需要计算决定因素,因此支持不适合最大似然训练的一般流量体系结构(例如,密度连接的网络)。我们从经验上证明,能量流达到竞争性生成建模性能,同时保持快速产生和后部推断。
translated by 谷歌翻译
机器学习的许多应用涉及预测模型输出的灵活概率分布。我们提出了自动评级分位式流动,这是一种灵活的概率模型,高维变量,可用于准确地捕获预测的炼膜不确定性。这些模型是根据适当评分规则使用新颖目标培训的自回归流动的情况,这简化了培训期间雅各比亚的计算昂贵的决定因素,并支持新型的神经结构。我们证明这些模型可用于参数化预测条件分布,提高时间序列预测和对象检测的概率预测质量。
translated by 谷歌翻译
Normalizing flows provide a general mechanism for defining expressive probability distributions, only requiring the specification of a (usually simple) base distribution and a series of bijective transformations. There has been much recent work on normalizing flows, ranging from improving their expressive power to expanding their application. We believe the field has now matured and is in need of a unified perspective. In this review, we attempt to provide such a perspective by describing flows through the lens of probabilistic modeling and inference. We place special emphasis on the fundamental principles of flow design, and discuss foundational topics such as expressive power and computational trade-offs. We also broaden the conceptual framing of flows by relating them to more general probability transformations. Lastly, we summarize the use of flows for tasks such as generative modeling, approximate inference, and supervised learning.
translated by 谷歌翻译
Normalizing Flows are generative models which produce tractable distributions where both sampling and density evaluation can be efficient and exact. The goal of this survey article is to give a coherent and comprehensive review of the literature around the construction and use of Normalizing Flows for distribution learning. We aim to provide context and explanation of the models, review current state-of-the-art literature, and identify open questions and promising future directions.
translated by 谷歌翻译
标准化流动,扩散归一化流量和变形自动置换器是强大的生成模型。在本文中,我们提供了一个统一的框架来通过马尔可夫链处理这些方法。实际上,我们考虑随机标准化流量作为一对马尔可夫链,满足一些属性,并表明许多用于数据生成的最先进模型适合该框架。马尔可夫链的观点使我们能够将确定性层作为可逆的神经网络和随机层作为大都会加速层,Langevin层和变形自身偏移,以数学上的声音方式。除了具有Langevin层的密度的层,扩散层或变形自身形式,也可以处理与确定性层或大都会加热器层没有密度的层。因此,我们的框架建立了一个有用的数学工具来结合各种方法。
translated by 谷歌翻译
For distributions $\mathbb{P}$ and $\mathbb{Q}$ with different supports or undefined densities, the divergence $\textrm{D}(\mathbb{P}||\mathbb{Q})$ may not exist. We define a Spread Divergence $\tilde{\textrm{D}}(\mathbb{P}||\mathbb{Q})$ on modified $\mathbb{P}$ and $\mathbb{Q}$ and describe sufficient conditions for the existence of such a divergence. We demonstrate how to maximize the discriminatory power of a given divergence by parameterizing and learning the spread. We also give examples of using a Spread Divergence to train implicit generative models, including linear models (Independent Components Analysis) and non-linear models (Deep Generative Networks).
translated by 谷歌翻译
Aleatoric不确定性量化寻求对随机响应的分配知识,这对于机器学习应用中的可靠性分析和鲁棒性改善非常重要。先前对息肉不确定性估计的研究主要针对封闭形成的条件密度或方差,这需要对数据分布或维度的强大限制。为了克服这些限制,我们研究了有条件的生成模型,以估计不确定性。我们介绍了两个指标,以测量适合这些模型的两个条件分布之间的差异。这两个指标都可以通过对条件生成模型的蒙特卡洛模拟轻松而公正地计算,从而促进其评估和培训。我们以数字方式证明了我们的指标如何提供有条件分布差异的正确度量,并可用于训练有条件的模型与现有基准有竞争力。
translated by 谷歌翻译
变异推理(VI)的核心原理是将计算复杂后概率密度计算的统计推断问题转换为可拖动的优化问题。该属性使VI比几种基于采样的技术更快。但是,传统的VI算法无法扩展到大型数据集,并且无法轻易推断出越野数据点,而无需重新运行优化过程。该领域的最新发展,例如随机,黑框和摊销VI,已帮助解决了这些问题。如今,生成的建模任务广泛利用摊销VI来实现其效率和可扩展性,因为它利用参数化函数来学习近似的后验密度参数。在本文中,我们回顾了各种VI技术的数学基础,以构成理解摊销VI的基础。此外,我们还概述了最近解决摊销VI问题的趋势,例如摊销差距,泛化问题,不一致的表示学习和后验崩溃。最后,我们分析了改善VI优化的替代差异度量。
translated by 谷歌翻译
当我们希望将其用作生成模型时,任何显式的功能表示$ f $都会受到两个主要障碍的阻碍:设计$ f $,以便采样快速,并估计$ z = \ int f $ ^{ - 1} f $集成到1。随着$ f $本身变得复杂,这变得越来越复杂。在本文中,我们表明,当通过让网络代表目标密度的累积分布函数并应用积极的基本定理,可以通过神经网络对一维条件密度进行建模时,可以精确地计算出$ z $。 。我们还得出了一种快速算法,用于通过逆变换方法从产生的表示。通过将这些原理扩展到更高的维度,我们介绍了\ textbf {神经逆变换采样器(NITS)},这是一个新颖的深度学习框架,用于建模和从一般,多维,紧凑的概率密度。 NIT是一个高度表达性的密度估计器,具有端到端的可不同性,快速采样以及精确且廉价的可能性评估。我们通过将其应用于现实,高维密度估计任务来证明NIT的适用性:基于CIFAR-10数据集对基于可能性的生成模型,以及基于基准数据集的UCI套件的密度估计,nits可以在其中产生令人信服的结果或超越或超越或超越或超越或超越或超越或超越或超越。艺术状态。
translated by 谷歌翻译
We investigate the training and performance of generative adversarial networks using the Maximum Mean Discrepancy (MMD) as critic, termed MMD GANs. As our main theoretical contribution, we clarify the situation with bias in GAN loss functions raised by recent work: we show that gradient estimators used in the optimization process for both MMD GANs and Wasserstein GANs are unbiased, but learning a discriminator based on samples leads to biased gradients for the generator parameters. We also discuss the issue of kernel choice for the MMD critic, and characterize the kernel corresponding to the energy distance used for the Cramér GAN critic. Being an integral probability metric, the MMD benefits from training strategies recently developed for Wasserstein GANs. In experiments, the MMD GAN is able to employ a smaller critic network than the Wasserstein GAN, resulting in a simpler and faster-training algorithm with matching performance. We also propose an improved measure of GAN convergence, the Kernel Inception Distance, and show how to use it to dynamically adapt learning rates during GAN training.
translated by 谷歌翻译
The framework of normalizing flows provides a general strategy for flexible variational inference of posteriors over latent variables. We propose a new type of normalizing flow, inverse autoregressive flow (IAF), that, in contrast to earlier published flows, scales well to high-dimensional latent spaces. The proposed flow consists of a chain of invertible transformations, where each transformation is based on an autoregressive neural network. In experiments, we show that IAF significantly improves upon diagonal Gaussian approximate posteriors. In addition, we demonstrate that a novel type of variational autoencoder, coupled with IAF, is competitive with neural autoregressive models in terms of attained log-likelihood on natural images, while allowing significantly faster synthesis.
translated by 谷歌翻译
We propose Multivariate Quantile Function Forecaster (MQF$^2$), a global probabilistic forecasting method constructed using a multivariate quantile function and investigate its application to multi-horizon forecasting. Prior approaches are either autoregressive, implicitly capturing the dependency structure across time but exhibiting error accumulation with increasing forecast horizons, or multi-horizon sequence-to-sequence models, which do not exhibit error accumulation, but also do typically not model the dependency structure across time steps. MQF$^2$ combines the benefits of both approaches, by directly making predictions in the form of a multivariate quantile function, defined as the gradient of a convex function which we parametrize using input-convex neural networks. By design, the quantile function is monotone with respect to the input quantile levels and hence avoids quantile crossing. We provide two options to train MQF$^2$: with energy score or with maximum likelihood. Experimental results on real-world and synthetic datasets show that our model has comparable performance with state-of-the-art methods in terms of single time step metrics while capturing the time dependency structure.
translated by 谷歌翻译
Normalizing flow is a class of deep generative models for efficient sampling and density estimation. In practice, the flow often appears as a chain of invertible neural network blocks; to facilitate training, existing works have regularized flow trajectories and designed special network architectures. The current paper develops a neural ODE flow network inspired by the Jordan-Kinderleherer-Otto (JKO) scheme, which allows efficient block-wise training of the residual blocks and avoids inner loops of score matching or variational learning. As the JKO scheme unfolds the dynamic of gradient flow, the proposed model naturally stacks residual network blocks one-by-one, reducing the memory load and difficulty of performing end-to-end training of deep flow networks. We also develop adaptive time reparameterization of the flow network with a progressive refinement of the trajectory in probability space, which improves the model training efficiency and accuracy in practice. Using numerical experiments with synthetic and real data, we show that the proposed JKO-iFlow model achieves similar or better performance in generating new samples compared with existing flow and diffusion models at a significantly reduced computational and memory cost.
translated by 谷歌翻译
基于似然或显式的深层生成模型使用神经网络来构建灵活的高维密度。该公式直接与歧管假设相矛盾,该假设指出,观察到的数据位于嵌入高维环境空间中的低维歧管上。在本文中,我们研究了在这种维度不匹配的情况下,最大可能的训练的病理。我们正式证明,在学习歧管本身而不是分布的情况下,可以实现堕落的优点,而我们称之为多种歧视的现象过于拟合。我们提出了一类两步程序,该过程包括降低降低步骤,然后进行最大样子密度估计,并证明它们在非参数方面恢复了数据生成分布,从而避免了多种歧视。我们还表明,这些过程能够对隐式模型(例如生成对抗网络)学到的流形进行密度估计,从而解决了这些模型的主要缺点。最近提出的几种方法是我们两步程序的实例。因此,我们统一,扩展和理论上证明了一大批模型。
translated by 谷歌翻译
最近推出的热集成技术已经了解并改善变推理(VI),提供了一个新的框架。在这项工作中,我们提出了热力学变目标(TVO)的仔细分析,弥合现有的变分目标和脱落的新见解,以推动该领域的差距。特别是,我们阐明了如何将TVO自然连接三个关键变方案,即重要性加权VI,仁义-VI,和MCMC-VI,它包含了最VI目标在实践中采用。为了解释理论和实践之间的性能差距,我们揭示热力学曲线的病理几何形状是如何产生负面影响TVO。通过推广加权平均持有人从几何平均值的整合路径,我们扩展TVO的理论和发现提高VI新的机遇。这促使我们的新VI的目标,命名为持有人的边界,这拼合热力学曲线和承诺,以实现精确的边缘数似然的一步逼近。提供对数字估计的选择的全面讨论。我们目前的合成和真实世界的数据集强有力的实证证据来支持我们的要求。
translated by 谷歌翻译
使用显式密度建模的生成模型(例如,变形式自动码码器,基于流动的生成模型)涉及从已知分布的映射,例如,从已知分布中找到映射。高斯,到未知的输入分布。这通常需要搜索一类非线性函数(例如,由深神经网络表示)。在实践中有效,相关的运行时/内存成本可以迅速增加,通常是应用程序中所需性能的函数。我们提出了一个更便宜的(更简单)的策略来估算基于内核传输运算符中的已知结果的此映射。我们表明我们的配方能够实现高效的分布近似和采样,并提供令人惊讶的良好的经验性能,与强大的基线有利,但有很大的运行时储蓄。我们表明该算法在小样本大小设置(脑成像)中也表现良好。
translated by 谷歌翻译
学习将模型分布与观察到的数据区分开来是统计和机器学习中的一个基本问题,而高维数据仍然是这些问题的挑战性环境。量化概率分布差异的指标(例如Stein差异)在高维度的统计测试中起重要作用。在本文中,我们考虑了一个希望区分未知概率分布和名义模型分布的数据的设置。虽然最近的研究表明,最佳$ l^2 $ regularized Stein评论家等于两个概率分布的分数函数的差异,最多是乘法常数,但我们研究了$ l^2 $正则化的作用,训练神经网络时差异评论家功能。由训练神经网络的神经切线内核理论的激励,我们开发了一种新的分期程序,用于训练时间的正则化重量。这利用了早期培训的优势,同时还可以延迟过度拟合。从理论上讲,我们将训练动态与大的正则重量与在早期培训时间的“懒惰训练”制度的内核回归优化相关联。在模拟的高维分布漂移数据和评估图像数据的生成模型的应用中,证明了分期$ l^2 $正则化的好处。
translated by 谷歌翻译
我们介绍了用于生成建模的广义能量模型(GEBM)。这些模型组合了两个训练有素的组件:基本分布(通常是隐式模型),可以在高维空间中学习具有低固有尺寸的数据的支持;和能量功能,优化学习支持的概率质量。能量函数和基座都共同构成了最终模型,与GANS不同,它仅保留基本分布(“发电机”)。通过在学习能量和基础之间交替进行培训GEBMS。我们表明,两种培训阶段都明确定义:通过最大化广义可能性来学习能量,并且由此产生的能源的损失提供了学习基础的信息梯度。可以通过MCMC获得来自训练模型的潜在空间的后部的样品,从而在该空间中找到产生更好的质量样本的区域。经验上,图像生成任务上的GEBM样本比来自学习发电机的图像更好,表明所有其他相同,GEBM将优于同样复杂性的GAN。当使用归一化流作为基础测量时,GEBMS成功地启动密度建模任务,返回相当的性能以直接相同网络的最大可能性。
translated by 谷歌翻译
我们研究是否使用两个条件型号$ p(x | z)$和$ q(z | x)$,以使用循环的两个条件型号,我们如何建模联合分配$ p(x,z)$。这是通过观察到深入生成模型的动机,除了可能的型号$ p(x | z)$,通常也使用推理型号$ q(z | x)$来提取表示,但它们通常依赖不表征的先前分配$ P(z)$来定义联合分布,这可能会使后塌和歧管不匹配等问题。为了探讨仅使用$ p(x | z)$和$ q(z | x)$模拟联合分布的可能性,我们研究其兼容性和确定性,对应于其条件分布一致的联合分布的存在和唯一性跟他们。我们为可操作的等价标准开发了一般理论,以实现兼容性,以及足够的确定条件。基于该理论,我们提出了一种新颖的生成建模框架来源,仅使用两个循环条件模型。我们开发方法以实现兼容性和确定性,并使用条件模型适合和生成数据。通过预先删除的约束,Cygen更好地适合数据并捕获由合成和现实世界实验支持的更多代表性特征。
translated by 谷歌翻译
在这项工作中,我们为生成自动编码器的变异培训提供了确切的可能性替代方法。我们表明,可以使用可逆层来构建VAE风格的自动编码器,该层提供了可拖动的精确可能性,而无需任何正则化项。这是在选择编码器,解码器和先前体系结构的全部自由的同时实现的,这使我们的方法成为培训现有VAE和VAE风格模型的替换。我们将结果模型称为流中的自动编码器(AEF),因为编码器,解码器和先验被定义为整体可逆体系结构的单个层。我们表明,在对数可能,样本质量和降低性能的方面,该方法的性能比结构上等效的VAE高得多。从广义上讲,这项工作的主要野心是在共同的可逆性和确切的最大可能性的共同框架下缩小正常化流量和自动编码器文献之间的差距。
translated by 谷歌翻译