强大的加强学习试图使预测对系统的动态或奖励的变化更加强大。当从数据中估算环境的动态和奖励时,此问题尤其重要。在本文中,我们近似使用$ \ phi $ divergence使用近似风险的配方来限制强大的增强学习。我们表明,通过目标的标准偏差惩罚,可以鲁esthing稳健地进行经典的增强学习配方。在经典的健身房环境中提出和测试了两种基于分布强化学习的算法,一种用于离散的算法,一种用于连续的动作空间,以证明算法的鲁棒性。
translated by 谷歌翻译
In recent years distributional reinforcement learning has produced many state of the art results. Increasingly sample efficient Distributional algorithms for the discrete action domain have been developed over time that vary primarily in the way they parameterize their approximations of value distributions, and how they quantify the differences between those distributions. In this work we transfer three of the most well-known and successful of those algorithms (QR-DQN, IQN and FQF) to the continuous action domain by extending two powerful actor-critic algorithms (TD3 and SAC) with distributional critics. We investigate whether the relative performance of the methods for the discrete action space translates to the continuous case. To that end we compare them empirically on the pybullet implementations of a set of continuous control tasks. Our results indicate qualitative invariance regarding the number and placement of distributional atoms in the deterministic, continuous action setting.
translated by 谷歌翻译
尽管强化学习(RL)对于不确定性下的顺序决策问题有效,但在风险或安全性是具有约束力约束的现实系统中,它仍然无法蓬勃发展。在本文中,我们将安全限制作为非零和游戏制定了RL问题。在用最大熵RL部署的同时,此配方会导致一个安全的对手引导的软角色批评框架,称为SAAC。在SAAC中,对手旨在打破安全约束,而RL代理的目标是在对手的策略下最大程度地提高约束价值功能。对代理的价值函数的安全限制仅表现为代理商和对手政策之间的排斥项。与以前的方法不同,SAAC可以解决不同的安全标准,例如安全探索,均值差异风险敏感性和类似CVAR的相干风险敏感性。我们说明了这些约束的对手的设计。然后,在每种变化中,我们都表明,除了学习解决任务外,代理人与对手的不安全行为不同。最后,对于具有挑战性的持续控制任务,我们证明SAAC可以实现更快的融合,提高效率和更少的失败以满足安全限制,而不是风险避免风险的分布RL和风险中性的软性参与者批判性算法。
translated by 谷歌翻译
分布强化学习〜(RL)是一类最先进的算法,可估计总回报的全部分布,而不仅仅是其期望。尽管分销RL的表现出色,但对基于预期的RL的优势的理论理解仍然难以捉摸。在本文中,我们将分布RL的优越性归因于其正规化效果,无论其预期如何,其价值分布信息。首先,通过稳健统计数据中总误差模型的变体的杠杆作用,我们将值分布分解为其预期和其余分布部分。因此,与基于期望的RL相比,分布RL的额外好处主要解释为在神经拟合Z-材料框架中\ textit {风险敏感的熵正则化}的影响。同时,我们在最大熵RL中的分布RL的风险敏感熵正则和香草熵之间建立了一个桥梁,专门针对参与者 - 批评算法。它揭示了分布RL诱导校正后的奖励函数,从而促进了针对环境内在不确定性的风险敏感探索。最后,广泛的实验证实了分布RL的正则化作用和不同熵正则化的相互影响的作用。我们的研究铺平了一种更好地解释分布RL算法的功效,尤其是通过正则化的镜头的方法。
translated by 谷歌翻译
Model-free deep reinforcement learning (RL) algorithms have been demonstrated on a range of challenging decision making and control tasks. However, these methods typically suffer from two major challenges: very high sample complexity and brittle convergence properties, which necessitate meticulous hyperparameter tuning. Both of these challenges severely limit the applicability of such methods to complex, real-world domains. In this paper, we propose soft actor-critic, an offpolicy actor-critic deep RL algorithm based on the maximum entropy reinforcement learning framework. In this framework, the actor aims to maximize expected reward while also maximizing entropy. That is, to succeed at the task while acting as randomly as possible. Prior deep RL methods based on this framework have been formulated as Q-learning methods. By combining off-policy updates with a stable stochastic actor-critic formulation, our method achieves state-of-the-art performance on a range of continuous control benchmark tasks, outperforming prior on-policy and off-policy methods. Furthermore, we demonstrate that, in contrast to other off-policy algorithms, our approach is very stable, achieving very similar performance across different random seeds.
translated by 谷歌翻译
准确的价值估计对于禁止禁止增强学习是重要的。基于时间差学学习的算法通常容易容易出现过度或低估的偏差。在本文中,我们提出了一种称为自适应校准批评者(ACC)的一般方法,该方法使用最近的高方差,但不偏见的on-Police Rollouts来缓解低方差时间差目标的偏差。我们将ACC应用于截断的分位数批评,这是一种连续控制的算法,允许使用每个环境调谐的超参数调节偏差。生成的算法在训练渲染渲染超参数期间自适应调整参数不必要,并在Openai健身房连续控制基准测试中设置一个新的算法中,这些算法在所有环境中没有调整HyperParameters的所有算法中。此外,我们证明ACC通过进一步将其进一步应用于TD3并在此设置中显示出改进的性能而相当一般。
translated by 谷歌翻译
软演员 - 评论家(SAC)被认为是连续动作空间设置中的最先进的算法。它使用最大熵框架进行效率和稳定性,并应用启发式温度拉格朗日术语来调整温度$ \ Alpha $,这决定了策略应该如何“软”。经验证据表明SAC在离散域中表现不佳是反直观的。在本文中,我们研究了这种现象的可能解释,并提出了靶熵调度囊(TES-囊),用于施加在囊上的靶熵参数的退火方法。目标熵是温度拉格朗日术语中的常数,表示离散囊中的目标政策熵。我们将我们的方法与不同常数目标熵囊的Atari 2600游戏进行比较,并分析我们的调度如何影响囊。
translated by 谷歌翻译
由于源极和目标环境之间的差异,深增强学习算法可以在现实世界的任务中表现不佳。这种差异通常被视为过渡动态的干扰。许多现有算法通过将干扰和应用于训练期间将其应用于源环境来学习强大的政策,这通常需要先验知识对模拟器的干扰和控制。然而,这些算法在目标环境中的干扰未知的情况下可能会失败,或者在模拟器中的模型中难以解决。为了解决这个问题,我们提出了一种新型的无模型演员 - 评论家算法 - 即状态保守政策优化(SCPO) - 学习强大的政策,而不会提前建立干扰。具体地,SCPO将转换动态的干扰降低到状态空间中的干扰,然后通过简单的基于梯度的常规器近似。 SCPO的吸引人的功能包括实施简单,不需要额外了解干扰或专门设计的模拟器。在若干机器人控制任务中的实验表明,SCPO了解抵抗过渡动态的干扰的强大政策。
translated by 谷歌翻译
最大熵增强学习(MaxEnt RL)算法,如软Q-Learning(SQL)和软演员 - 评论家权衡奖励和政策熵,有可能提高培训稳定性和鲁棒性。然而,大多数最大的RL方法使用恒定的权衡系数(温度),与温度应该在训练早期高的直觉相反,以避免对嘈杂的价值估算和减少培训后,我们越来越多地信任高价值估计,避免危险的估算和减少导致好奖励。此外,我们对价值估计的置信度是国家依赖的,每次使用更多证据来更新估算时都会增加。在本文中,我们提出了一种简单的状态温度调度方法,并将其实例化为基于计数的软Q学习(CBSQL)。我们在玩具领域以及在几个Atari 2600域中评估我们的方法,并显示有前途的结果。
translated by 谷歌翻译
In reinforcement learning an agent interacts with the environment by taking actions and observing the next state and reward. When sampled probabilistically, these state transitions, rewards, and actions can all induce randomness in the observed long-term return. Traditionally, reinforcement learning algorithms average over this randomness to estimate the value function. In this paper, we build on recent work advocating a distributional approach to reinforcement learning in which the distribution over returns is modeled explicitly instead of only estimating the mean. That is, we examine methods of learning the value distribution instead of the value function. We give results that close a number of gaps between the theoretical and algorithmic results given by Bellemare, . First, we extend existing results to the approximate distribution setting. Second, we present a novel distributional reinforcement learning algorithm consistent with our theoretical formulation. Finally, we evaluate this new algorithm on the Atari 2600 games, observing that it significantly outperforms many of the recent improvements on DQN, including the related distributional algorithm C51.
translated by 谷歌翻译
深度加强学习(DRL)的框架为连续决策提供了强大而广泛适用的数学形式化。本文提出了一种新的DRL框架,称为\ emph {$ f $-diveliventcence加强学习(frl)}。在FRL中,通过最大限度地减少学习政策和采样策略之间的$ F $同时执行策略评估和政策改进阶段,这与旨在最大化预期累计奖励的传统DRL算法不同。理论上,我们证明最小化此类$ F $ - 可以使学习政策会聚到最佳政策。此外,我们将FRL框架中的培训代理程序转换为通过Fenchel Concugate的特定$ F $函数转换为鞍点优化问题,这构成了政策评估和政策改进的新方法。通过数学证据和经验评估,我们证明FRL框架有两个优点:(1)政策评估和政策改进过程同时进行,(2)高估价值函数的问题自然而缓解。为了评估FRL框架的有效性,我们对Atari 2600的视频游戏进行实验,并显示在FRL框架中培训的代理匹配或超越基线DRL算法。
translated by 谷歌翻译
在动态编程(DP)和强化学习(RL)中,代理商学会在通过由Markov决策过程(MDP)建模的环境中顺序交互来实现预期的长期返回。更一般地在分布加强学习(DRL)中,重点是返回的整体分布,而不仅仅是其期望。虽然基于DRL的方法在RL中产生了最先进的性能,但它们涉及尚未充分理解的额外数量(与非分布设置相比)。作为第一个贡献,我们介绍了一类新的分类运营商,以及一个实用的DP算法,用于策略评估,具有强大的MDP解释。实际上,我们的方法通过增强的状态空间重新重新重新重新重新重新格式化,其中每个状态被分成最坏情况的子变量,并且最佳的子变电站,其值分别通过安全和危险的策略最大化。最后,我们派生了分配运营商和DP算法解决了一个新的控制任务:如何区分安全性的最佳动作,以便在最佳政策空间中打破联系?
translated by 谷歌翻译
不确定性量化是现实世界应用中机器学习的主要挑战之一。在强化学习中,一个代理人面对两种不确定性,称为认识论不确定性和态度不确定性。同时解开和评估这些不确定性,有机会提高代理商的最终表现,加速培训并促进部署后的质量保证。在这项工作中,我们为连续控制任务的不确定性感知强化学习算法扩展了深层确定性策略梯度算法(DDPG)。它利用了认识论的不确定性,以加快探索和不确定性来学习风险敏感的政策。我们进行数值实验,表明我们的DDPG变体在机器人控制和功率网络优化方面的基准任务中均优于香草DDPG而没有不确定性估计。
translated by 谷歌翻译
我们考虑从分布强化学习中学习一组概率分布的问题(RL),该学位与仅在经典RL中的期望相比,学习了整个返回分布。尽管它成功地获得了卓越的性能,但我们仍然对分布RL中的价值分布的工作方式有糟糕的了解。在这项研究中,我们通过在神经拟合z-材料〜(Neural FZI)框架中的其他价值分布信息的杠杆作用来分析分布RL的优化益处。首先,我们证明了分布RL的分布损失具有理想的平滑性特征,因此具有稳定的梯度,这与促进优化稳定性的趋势一致。此外,分布RL的加速效应是通过分解返回分布来揭示的。事实证明,如果合适的值分布近似值,则分布RL可以表现出色,该分布由每个特定分布RL算法中每个环境中梯度估计的方差衡量。严格的实验验证了分布RL的稳定优化行为,与经典RL相比,其加速效应有助于其加速作用。我们研究的发现阐明了分布RL算法中的价值分布如何有助于优化。
translated by 谷歌翻译
几乎可以肯定(或使用概率)满足安全限制对于在现实生活中的增强学习(RL)的部署至关重要。例如,理想情况下,平面降落和起飞应以概率为单位发生。我们通过引入安全增强(SAUTE)马尔可夫决策过程(MDP)来解决该问题,在该过程中,通过将其扩大到州空间并重塑目标来消除安全限制。我们表明,Saute MDP满足了Bellman方程,并使我们更加接近解决安全的RL,几乎可以肯定地满足。我们认为,Saute MDP允许从不同的角度查看安全的RL问题,从而实现新功能。例如,我们的方法具有插件的性质,即任何RL算法都可以“炒”。此外,国家扩展允许跨安全限制进行政策概括。我们最终表明,当约束满意度非常重要时,SAUTE RL算法的表现可以胜过其最先进的对应物。
translated by 谷歌翻译
在这项工作中,我们继续建立最近有限马尔可夫进程的钢筋学习的进步。以前现有的算法中的一种共同方法,包括单个演员和分布式,都是剪辑奖励,也可以在Q函数上应用转换方法,以处理真正的折扣回报中的各种大小。理论上我们展示了如果我们有非确定性过程,最成功的方法可能不会产生最佳政策。作为一种解决方案,我们认为分布加强学习借给自己完全解决这种情况。通过引入共轭分布运营商,我们可以处理大量转换,以获得有保证的理论融合。我们提出了一种基于该操作员的近似单录像机算法,该操作员使用Cram \'ER距离给出的适当分布度量直接在不妨碍的奖励上培养代理。在使用粘性动作的35个Atari 2600游戏套件中培训代理的随机环境中的表现,与多巴胺框架中的其他众所周知的算法相比,获得最先进的绩效。
translated by 谷歌翻译
Effectively leveraging large, previously collected datasets in reinforcement learning (RL) is a key challenge for large-scale real-world applications. Offline RL algorithms promise to learn effective policies from previously-collected, static datasets without further interaction. However, in practice, offline RL presents a major challenge, and standard off-policy RL methods can fail due to overestimation of values induced by the distributional shift between the dataset and the learned policy, especially when training on complex and multi-modal data distributions. In this paper, we propose conservative Q-learning (CQL), which aims to address these limitations by learning a conservative Q-function such that the expected value of a policy under this Q-function lower-bounds its true value. We theoretically show that CQL produces a lower bound on the value of the current policy and that it can be incorporated into a policy learning procedure with theoretical improvement guarantees. In practice, CQL augments the standard Bellman error objective with a simple Q-value regularizer which is straightforward to implement on top of existing deep Q-learning and actor-critic implementations. On both discrete and continuous control domains, we show that CQL substantially outperforms existing offline RL methods, often learning policies that attain 2-5 times higher final return, especially when learning from complex and multi-modal data distributions.Preprint. Under review.
translated by 谷歌翻译
在本文中,我们提出了一种用于增强学习(RL)的最大熵框架,以克服在无模型基于样本的学习中实现最大熵RL的软演员 - 评论权(SAC)算法的限制。尽管在未来的最大熵RL指南学习政策中,未来的高熵达到国家,所提出的MAX-MIN熵框架旨在学会访问低熵的国家,并最大限度地提高这些低熵状态的熵,以促进更好的探索。对于一般马尔可夫决策过程(MDP),基于勘探和剥削的解剖学,在提议的MAX-MIN熵框架下构建了一种有效的算法。数值结果表明,该算法对目前最先进的RL算法产生了剧烈性能改进。
translated by 谷歌翻译
Classical reinforcement learning (RL) techniques are generally concerned with the design of decision-making policies driven by the maximisation of the expected outcome. Nevertheless, this approach does not take into consideration the potential risk associated with the actions taken, which may be critical in certain applications. To address that issue, the present research work introduces a novel methodology based on distributional RL to derive sequential decision-making policies that are sensitive to the risk, the latter being modelled by the tail of the return probability distribution. The core idea is to replace the $Q$ function generally standing at the core of learning schemes in RL by another function taking into account both the expected return and the risk. Named the risk-based utility function $U$, it can be extracted from the random return distribution $Z$ naturally learnt by any distributional RL algorithm. This enables to span the complete potential trade-off between risk minimisation and expected return maximisation, in contrast to fully risk-averse methodologies. Fundamentally, this research yields a truly practical and accessible solution for learning risk-sensitive policies with minimal modification to the distributional RL algorithm, and with an emphasis on the interpretability of the resulting decision-making process.
translated by 谷歌翻译
学习平均回报或价值功能的预测模型在许多强化学习算法中起着至关重要的作用。相反,分布强化学习(DRL)方法对价值分布进行了建模,该价值分布已被证明可以改善许多设置的性能。在本文中,我们使用Markov链中央限制定理将值分布建模为大约正常的。我们通过分析计算分位数,以提供一个新的DRL目标,该目标通过在情节过程中发生的标准偏差减少所告知。此外,我们还建议基于学习价值分布的近距离探索策略,类似于目标正态分布,以使价值更加准确以更好地改进策略。我们概述的方法与许多DRL结构兼容。我们使用近端政策优化作为测试台,并表明正常性引导的目标和勘探奖金都会改善绩效。我们演示了我们的方法在许多连续的控制任务上优于DRL基准。
translated by 谷歌翻译