Fingerprints are key tools in climate change detection and attribution (D&A) that are used to determine whether changes in observations are different from internal climate variability (detection), and whether observed changes can be assigned to specific external drivers (attribution). We propose a direct D&A approach based on supervised learning to extract fingerprints that lead to robust predictions under relevant interventions on exogenous variables, i.e., climate drivers other than the target. We employ anchor regression, a distributionally-robust statistical learning method inspired by causal inference that extrapolates well to perturbed data under the interventions considered. The residuals from the prediction achieve either uncorrelatedness or mean independence with the exogenous variables, thus guaranteeing robustness. We define D&A as a unified hypothesis testing framework that relies on the same statistical model but uses different targets and test statistics. In the experiments, we first show that the CO2 forcing can be robustly predicted from temperature spatial patterns under strong interventions on the solar forcing. Second, we illustrate attribution to the greenhouse gases and aerosols while protecting against interventions on the aerosols and CO2 forcing, respectively. Our study shows that incorporating robustness constraints against relevant interventions may significantly benefit detection and attribution of climate change.
translated by 谷歌翻译
The widely used 'Counterfactual' definition of Causal Effects was derived for unbiasedness and accuracy - and not generalizability. We propose a simple definition for the External Validity (EV) of Interventions and Counterfactuals. The definition leads to EV statistics for individual counterfactuals, and to non-parametric effect estimators for sets of counterfactuals (i.e., for samples). We use this new definition to discuss several issues that have baffled the original counterfactual formulation: out-of-sample validity, reliance on independence assumptions or estimation, concurrent estimation of multiple effects and full-models, bias-variance tradeoffs, statistical power, omitted variables, and connections to current predictive and explaining techniques. Methodologically, the definition also allows us to replace the parametric, and generally ill-posed, estimation problems that followed the counterfactual definition by combinatorial enumeration problems in non-experimental samples. We use this framework to generalize popular supervised, explaining, and causal-effect estimators, improving their performance across three dimensions (External Validity, Unconfoundness and Accuracy) and enabling their use in non-i.i.d. samples. We demonstrate gains over the state-of-the-art in out-of-sample prediction, intervention effect prediction and causal effect estimation tasks. The COVID19 pandemic highlighted the need for learning solutions to provide general predictions in small samples - many times with missing variables. We also demonstrate applications in this pressing problem.
translated by 谷歌翻译
Network-based analyses of dynamical systems have become increasingly popular in climate science. Here we address network construction from a statistical perspective and highlight the often ignored fact that the calculated correlation values are only empirical estimates. To measure spurious behaviour as deviation from a ground truth network, we simulate time-dependent isotropic random fields on the sphere and apply common network construction techniques. We find several ways in which the uncertainty stemming from the estimation procedure has major impact on network characteristics. When the data has locally coherent correlation structure, spurious link bundle teleconnections and spurious high-degree clusters have to be expected. Anisotropic estimation variance can also induce severe biases into empirical networks. We validate our findings with ERA5 reanalysis data. Moreover we explain why commonly applied resampling procedures are inappropriate for significance evaluation and propose a statistically more meaningful ensemble construction framework. By communicating which difficulties arise in estimation from scarce data and by presenting which design decisions increase robustness, we hope to contribute to more reliable climate network construction in the future.
translated by 谷歌翻译
因果学习的基本难度是通常不能根据观察数据完全识别因果模型。介入数据,即源自不同实验环境的数据,提高了可识别性。然而,改善统治性取决于每个实验中的干预措施的目标和性质。由于在实际应用实验往往是昂贵的,因此需要执行正确的干预措施,使得尽可能少。在这项工作中,我们提出了一种基于不变因果预测(ICP)的新的主动学习(即实验选择)框架(A-ICP)(Peters等,2016)。对于一般结构因果模型,我们的表征干预对所谓的稳定集的影响,由(Pfister等,2019)引入的概念。我们利用这些结果提出了用于A-ICP的几个干预选择策略,该策略快速揭示了因果图中响应变量的直接原因,同时保持ICP中固有的错误控制。经验上,我们分析了拟议的拟议政策在人口和有限政府实验中的表现。
translated by 谷歌翻译
本文提出了一种基于图形的正则化回归估计器 - 分层特征回归(HFR) - 从机器学习和图论域名的洞察力调动洞察力,以估算线性回归的鲁棒参数。估计器构造一个监督的特征图,该监督特征图沿其边缘分解参数,首先调整常见变化并连续地将特殊性模式结合到拟合过程中。图形结构具有对组靶标的参数收缩的影响,其中收缩程度由肝异常的控制,并且基团组合物以及收缩靶数是内源性的。该方法提供了丰富的资源,以便在数据中的潜在效果结构的视觉探索,并与一系列经验和模拟回归任务的常用正则化技术面板相比,展示了良好的预测精度和多功能性。
translated by 谷歌翻译
交叉验证是一种广泛使用的技术来估计预测误差,但其行为很复杂且不完全理解。理想情况下,人们想认为,交叉验证估计手头模型的预测错误,适合训练数据。我们证明,普通最小二乘拟合的线性模型并非如此。相反,它估计模型的平均预测误差适合于同一人群提取的其他看不见的训练集。我们进一步表明,这种现象发生在大多数流行的预测误差估计中,包括数据拆分,自举和锦葵的CP。接下来,从交叉验证得出的预测误差的标准置信区间可能的覆盖范围远低于所需水平。由于每个数据点都用于训练和测试,因此每个折叠的测量精度之间存在相关性,因此方差的通常估计值太小。我们引入了嵌套的交叉验证方案,以更准确地估计该方差,并从经验上表明,在传统的交叉验证间隔失败的许多示例中,这种修改导致间隔大致正确覆盖。
translated by 谷歌翻译
在过去几十年中,已经提出了各种方法,用于估计回归设置中的预测间隔,包括贝叶斯方法,集合方法,直接间隔估计方法和保形预测方法。重要问题是这些方法的校准:生成的预测间隔应该具有预定义的覆盖水平,而不会过于保守。在这项工作中,我们从概念和实验的角度审查上述四类方法。结果来自各个域的基准数据集突出显示从一个数据集中的性能的大波动。这些观察可能归因于违反某些类别的某些方法所固有的某些假设。我们说明了如何将共形预测用作提供不具有校准步骤的方法的方法的一般校准程序。
translated by 谷歌翻译
Model-X条件随机测试是有条件独立性测试的通用框架,解锁了新的可能性,以发现与感兴趣的响应有条件相关的特征,同时控制I型错误率。该测试的一个吸引力的优势是,它可以与任何机器学习模型一起使用来设计强大的测试统计数据。反过来,Model-X文献中的常见实践是使用机器学习模型形成测试统计量,经过培训,以最大程度地提高预测精度,希望能够获得良好的功率测试。但是,这里的理想目标是推动模型(在训练期间)以最大程度地提高测试功能,而不仅仅是预测精度。在本文中,我们通过首次引入新型模型拟合方案来弥合这一差距,这些方案旨在明确提高Model-X测试的功能。这是通过引入新的成本函数来完成的,该功能旨在最大化用于衡量有条件独立性违反的测试统计量。使用合成和真实的数据集,我们证明了我们提出的损失函数与各种基本预测模型(Lasso,弹性网和深神经网络)的组合始终增加所获得的正确发现的数量,同时维持I型错误率下的I型错误率控制。
translated by 谷歌翻译
当用于训练模型的源数据与用于测试模型的目标数据不同时,域适应(DA)作为统计机器学习的重要问题。 DA最近的进展主要是应用驱动的,并且主要依赖于源和目标数据的常见子空间的想法。要了解DA方法的经验成功和失败,我们通过结构因果模型提出了理论框架,可以实现DA方法的预测性能的分析和比较。此框架还允许我们逐项逐项列出DA方法具有低目标错误所需的假设。此外,通过我们理论的见解,我们提出了一种名为CIRM的新DA方法,当协变量和标签分布都在目标数据中被扰乱时,胜过现有的DA方法。我们补充了广泛的模拟的理论分析,以表明设计了设计的必要性。还提供可重复的合成和实际数据实验,以说明当我们理论中的某些假设的某些问题被侵犯时DA方法的强度和弱点。
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译
仪器变量模型使我们能够确定协变量$ x $和响应$ y $之间的因果功能,即使在存在未观察到的混淆的情况下。大多数现有估计器都假定响应$ y $和隐藏混杂因素中的错误项与仪器$ z $不相关。这通常是由图形分离的动机,这一论点也证明了独立性。但是,提出独立限制会导致严格的可识别性结果。我们连接到计量经济学的现有文献,并提供了一种称为HSIC-X的实用方法,用于利用独立性,可以与任何基于梯度的学习程序结合使用。我们看到,即使在可识别的设置中,考虑到更高的矩可能会产生更好的有限样本结果。此外,我们利用独立性进行分布泛化。我们证明,只要这些移位足够强,拟议的估计器对于仪器的分布变化和最佳案例最佳变化是不变的。这些结果即使在未识别的情况下也能够得出这些结果,即仪器不足以识别因果功能。
translated by 谷歌翻译
如今,收集来自不同环境的特征和响应对的观察已经变得越来越普遍。结果,由于分布变化,必须将学习的预测变量应用于具有不同分布的数据。一种原则性的方法是采用结构性因果模型来描述培训和测试模型,遵循不变性原则,该原理说响应的条件分布鉴于其预测因素在整个环境中保持不变。但是,当响应干预时,在实际情况下可能会违反该原则。一个自然的问题是,是否仍然可以识别其他形式的不变性来促进在看不见的环境中的预测。为了阐明这种具有挑战性的情况,我们引入了不变的匹配属性(IMP),这是通过附加功能捕获干预措施的明确关系。这导致了一种替代形式的不变性形式,该形式能够对响应进行统一的一般干预措施。我们在离散环境设置和连续环境设置下分析了我们方法的渐近概括误差,在该设置中,通过将其与半磁头变化的系数模型相关联来处理连续情况。我们提出的算法与各种实验环境中的现有方法相比表现出竞争性能。
translated by 谷歌翻译
开发了一种使用多个辅助变量的非静止空间建模算法。它将Geodatistics与Simitile随机林结合起来,以提供一种新的插值和随机仿真算法。本文介绍了该方法,并表明它具有与施加地统计学建模和定量随机森林的那些相似的一致性结果。该方法允许嵌入更简单的插值技术,例如Kriging,以进一步调节模型。该算法通过估计每个目标位置处的目标变量的条件分布来工作。这种分布的家庭称为目标变量的包络。由此,可以获得空间估计,定量和不确定性。还开发了一种从包络产生条件模拟的算法。随着它们从信封中的样本,因此通过相对变化的次要变量,趋势和可变性的相对变化局部地影响。
translated by 谷歌翻译
Causal inference is the process of using assumptions, study designs, and estimation strategies to draw conclusions about the causal relationships between variables based on data. This allows researchers to better understand the underlying mechanisms at work in complex systems and make more informed decisions. In many settings, we may not fully observe all the confounders that affect both the treatment and outcome variables, complicating the estimation of causal effects. To address this problem, a growing literature in both causal inference and machine learning proposes to use Instrumental Variables (IV). This paper serves as the first effort to systematically and comprehensively introduce and discuss the IV methods and their applications in both causal inference and machine learning. First, we provide the formal definition of IVs and discuss the identification problem of IV regression methods under different assumptions. Second, we categorize the existing work on IV methods into three streams according to the focus on the proposed methods, including two-stage least squares with IVs, control function with IVs, and evaluation of IVs. For each stream, we present both the classical causal inference methods, and recent developments in the machine learning literature. Then, we introduce a variety of applications of IV methods in real-world scenarios and provide a summary of the available datasets and algorithms. Finally, we summarize the literature, discuss the open problems and suggest promising future research directions for IV methods and their applications. We also develop a toolkit of IVs methods reviewed in this survey at https://github.com/causal-machine-learning-lab/mliv.
translated by 谷歌翻译
因果关系是理解世界的科学努力的基本组成部分。不幸的是,在心理学和社会科学中,因果关系仍然是禁忌。由于越来越多的建议采用因果方法进行研究的重要性,我们重新制定了心理学研究方法的典型方法,以使不可避免的因果理论与其余的研究渠道协调。我们提出了一个新的过程,该过程始于从因果发现和机器学习的融合中纳入技术的发展,验证和透明的理论形式规范。然后,我们提出将完全指定的理论模型的复杂性降低到与给定目标假设相关的基本子模型中的方法。从这里,我们确定利息量是否可以从数据中估算出来,如果是的,则建议使用半参数机器学习方法来估计因果关系。总体目标是介绍新的研究管道,该管道可以(a)促进与测试因果理论的愿望兼容的科学询问(b)鼓励我们的理论透明代表作为明确的数学对象,(c)将我们的统计模型绑定到我们的统计模型中该理论的特定属性,因此减少了理论到模型间隙通常引起的规范不足问题,以及(d)产生因果关系和可重复性的结果和估计。通过具有现实世界数据的教学示例来证明该过程,我们以摘要和讨论来结论。
translated by 谷歌翻译
最佳定价,即确定最大限度地提高给定产品的利润或收入的价格水平,是零售业的重要任务。要选择这样的数量,请先估计产品需求的价格弹性。由于混淆效果和价格内限性,回归方法通常无法恢复这些弹性。因此,通常需要随机实验。然而,例如,弹性可以是高度异构的,这取决于商店的位置。随着随机化经常发生在市级,标准差异差异方法也可能失败。可能的解决方案是基于根据从人工对照构成的治疗方法测量处理对单个(或仅几个)处理单元的影响的方法。例如,对于治疗组中的每个城市,可以从未处理的位置构成反事实。在本文中,我们应用了一种新的高维统计方法,以衡量价格变化对巴西主要零售商的日常销售的影响。所提出的方法结合了主成分(因子)和稀疏回归,导致一种称为因子调整的正规化方法的方法(\ TextTt {FarmTraTeat})。数据包括每日五种不同产品的日常销售和价格,超过400多名市。审议的产品属于\ emph {甜蜜和糖果}类别和实验已经在2016年和2017年进行。我们的结果证实了高度异质性的假设,从而产生了与独特的市政当局的不同定价策略。
translated by 谷歌翻译
At the core of insurance business lies classification between risky and non-risky insureds, actuarial fairness meaning that risky insureds should contribute more and pay a higher premium than non-risky or less-risky ones. Actuaries, therefore, use econometric or machine learning techniques to classify, but the distinction between a fair actuarial classification and "discrimination" is subtle. For this reason, there is a growing interest about fairness and discrimination in the actuarial community Lindholm, Richman, Tsanakas, and Wuthrich (2022). Presumably, non-sensitive characteristics can serve as substitutes or proxies for protected attributes. For example, the color and model of a car, combined with the driver's occupation, may lead to an undesirable gender bias in the prediction of car insurance prices. Surprisingly, we will show that debiasing the predictor alone may be insufficient to maintain adequate accuracy (1). Indeed, the traditional pricing model is currently built in a two-stage structure that considers many potentially biased components such as car or geographic risks. We will show that this traditional structure has significant limitations in achieving fairness. For this reason, we have developed a novel pricing model approach. Recently some approaches have Blier-Wong, Cossette, Lamontagne, and Marceau (2021); Wuthrich and Merz (2021) shown the value of autoencoders in pricing. In this paper, we will show that (2) this can be generalized to multiple pricing factors (geographic, car type), (3) it perfectly adapted for a fairness context (since it allows to debias the set of pricing components): We extend this main idea to a general framework in which a single whole pricing model is trained by generating the geographic and car pricing components needed to predict the pure premium while mitigating the unwanted bias according to the desired metric.
translated by 谷歌翻译
上下文的强盗和强化学习算法已成功用于各种交互式学习系统,例如在线广告,推荐系统和动态定价。但是,在高风险应用领域(例如医疗保健)中,它们尚未被广泛采用。原因之一可能是现有方法假定基本机制是静态的,因为它们不会在不同的环境上改变。但是,在许多现实世界中,这些机制可能会跨环境变化,这可能使静态环境假设无效。在本文中,考虑到离线上下文匪徒的框架,我们迈出了解决环境转变问题的一步。我们认为环境转移问题通过因果关系的角度,并提出了多种环境的背景匪徒,从而可以改变基本机制。我们采用因果关系文献的不变性概念,并介绍了政策不变性的概念。我们认为,仅当存在未观察到的变量时,政策不变性才有意义,并表明在这种情况下,保证在适当假设下跨环境概括最佳不变政策。我们的结果建立了因果关系,不变性和上下文土匪之间的具体联系。
translated by 谷歌翻译
关于人们的预测,例如他们预期的教育成就或信用风险,可以表现出色,并塑造他们旨在预测的结果。了解这些预测对最终结果的因果影响对于预测未来预测模型的含义并选择要部署哪些模型至关重要。但是,该因果估计任务带来了独特的挑战:模型预测通常是输入特征的确定性功能,并且与结果高度相关,这可能使预测的因果效应不可能从协变量的直接效应中解散。我们通过因果可识别性的角度研究了这个问题,尽管该问题完全普遍,但我们突出了三种自然情况,在这些情况下,可以从观察数据中确定预测对结果的因果影响:基于预测或基于预测的决策中的随机化。 ,在数据收集过程中部署的预测模型和离散预测输出的过度参数化。我们从经验上表明,在适当的可识别性条件下,从预测中预测的监督学习的标准变体可以找到特征,预测和结果之间的可转移功能关系,从而得出有关新部署的预测模型的结论。我们的积极结果从根本上依赖于在数据收集期间记录的模型预测,从而提出了重新思考标准数据收集实践的重要性,以使进步能够更好地理解社会成果和表现性反馈循环。
translated by 谷歌翻译
科学家经常优先考虑从数据学习,而不是培训最佳模型;但是,机器学习的研究通常优先考虑后者。边际特征重要的方法(例如边际贡献特征重要性(MCI))试图通过提供一个有用的框架来打破这种趋势,以量化以可解释方式量化数据的关系。在这项工作中,我们概括了MCI的框架,同时旨在通过引入超级边界特征的重要性(UMFI)来提高性能和运行时。为此,我们证明可以通过应用AI公平文献中的预处理方法直接计算UMFI来删除功能集中的依赖项。我们在真实和模拟数据上显示了UMFI至少和MCI的性能,在存在相关相互作用和无关特征的情况下,性能明显更好,同时大大降低了MCI的指数运行时间为超线性。
translated by 谷歌翻译