现有的深层压缩传感(CS)方法要么忽略自适应在线优化,要么依赖重建过程中昂贵的迭代优化器。这项工作探索了一个新颖的图像CS框架,具有复发性的结构约束,称为r $^2 $ cs-net。 R $^2 $ CS-NET首先通过新颖的复发神经网络逐步优化了获得的采样。然后,级联的残留卷积网络从优化的潜在表示中充分重建图像。作为第一个Deep CS框架有效地桥接自适应在线优化,R $^2 $ CS-NET将在线优化的鲁棒性与深度学习方法的效率和非线性容量相结合。信号相关已通过网络体系结构解决。自适应感测性的性质进一步使其成为通过利用通道相关性的彩色图像CS的理想候选者。数值实验验证了所提出的复发潜在优化设计不仅可以实现适应动机,而且在同一场景中胜过经典的长期记忆(LSTM)体系结构。总体框架表明了硬件实施可行性,并具有现有的DEEP CS基准中的领先鲁棒性和概括能力。
translated by 谷歌翻译
将优化算法映射到神经网络中,深度展开的网络(DUNS)在压缩传感(CS)方面取得了令人印象深刻的成功。从优化的角度来看,Duns从迭代步骤中继承了一个明确且可解释的结构。但是,从神经网络设计的角度来看,大多数现有的Dun是基于传统图像域展开而固有地建立的,该图像域的展开将一通道图像作为相邻阶段之间的输入和输出,从而导致信息传输能力不足,并且不可避免地会损失图像。细节。在本文中,为了打破上述瓶颈,我们首先提出了一个广义的双域优化框架,该框架是逆成像的一般性,并将(1)图像域和(2)卷积编码域先验的优点整合到限制解决方案空间中的可行区域。通过将所提出的框架展开到深神经网络中,我们进一步设计了一种新型的双域深卷积编码网络(D3C2-NET),用于CS成像,具有通过所有展开的阶段传输高通量特征级图像表示的能力。关于自然图像和MR图像的实验表明,与其他最先进的艺术相比,我们的D3C2-NET实现更高的性能和更好的准确性权衡权衡。
translated by 谷歌翻译
Deep unfolding networks (DUNs) have proven to be a viable approach to compressive sensing (CS). In this work, we propose a DUN called low-rank CS network (LR-CSNet) for natural image CS. Real-world image patches are often well-represented by low-rank approximations. LR-CSNet exploits this property by adding a low-rank prior to the CS optimization task. We derive a corresponding iterative optimization procedure using variable splitting, which is then translated to a new DUN architecture. The architecture uses low-rank generation modules (LRGMs), which learn low-rank matrix factorizations, as well as gradient descent and proximal mappings (GDPMs), which are proposed to extract high-frequency features to refine image details. In addition, the deep features generated at each reconstruction stage in the DUN are transferred between stages to boost the performance. Our extensive experiments on three widely considered datasets demonstrate the promising performance of LR-CSNet compared to state-of-the-art methods in natural image CS.
translated by 谷歌翻译
为了更有效地解决图像压缩传感(CS)问题,我们提出了一种新颖的内容可扩展的网络,该网络称为CASNET,该网络共同实现了自适应采样率分配,精细的粒状可伸缩性和高质量的重建。我们首先采用数据驱动的显着性检测器来评估不同图像区域的重要性,并提出基于显着性的块比率汇总(BRA)策略来分配采样率。然后开发一个统一的可学习生成矩阵,以产生具有有序结构的任何CS比的采样矩阵。 CASNET配备了由显着性信息和防止伪影的多块训练方案引导的优化启发的恢复子网,CASNET与一个单个模型共同重建以各种采样率采样的图像阻止。为了加速训练收敛并改善网络鲁棒性,我们提出了一种基于SVD的初始化方案和随机转换增强(RTE)策略,在没有引入额外参数的情况下是可扩展的。所有CASNET组件都可以组合和端到端学习。我们进一步提供了四个阶段的实施,用于评估和实际部署。实验表明,CASNET大量优于其他CS网络,从而验证了其组件和策略之间的协作和相互支持。代码可在https://github.com/guaishou74851/casnet上找到。
translated by 谷歌翻译
与传统CS方法相比,基于深度学习(DL)的压缩传感(CS)已被应用于图像重建的更好性能。但是,大多数现有的DL方法都利用逐个块测量,每个测量块分别恢复,这引入了重建的有害阻塞效应。此外,这些方法的神经元接受场被设计为每一层的大小相同,这只能收集单尺度的空间信息,并对重建过程产生负面影响。本文提出了一个新的框架,称为CS测量和重建的多尺度扩张卷积神经网络(MSDCNN)。在测量期间,我们直接从训练有素的测量网络中获得所有测量,该测量网络采用了完全卷积结构,并通过输入图像与重建网络共同训练。它不必将其切成块,从而有效地避免了块效应。在重建期间,我们提出了多尺度特征提取(MFE)体系结构,以模仿人类视觉系统以捕获同一功能映射的多尺度特征,从而增强了框架的图像特征提取能力并提高了框架的性能并提高了框架的性能。影像重建。在MFE中,有多个并行卷积通道以获取多尺度特征信息。然后,将多尺度功能信息融合在一起,并以高质量重建原始图像。我们的实验结果表明,根据PSNR和SSIM,该提出的方法对最新方法的性能有利。
translated by 谷歌翻译
卷积神经网络(CNNS)成功地进行了压缩图像感测。然而,由于局部性和重量共享的归纳偏差,卷积操作证明了建模远程依赖性的内在限制。变压器,最初作为序列到序列模型设计,在捕获由于基于自我关注的架构而捕获的全局背景中,即使它可以配备有限的本地化能力。本文提出了一种混合框架,一个混合框架,其集成了从CNN提供的借用的优点以及变压器提供的全局上下文,以获得增强的表示学习。所提出的方法是由自适应采样和恢复组成的端到端压缩图像感测方法。在采样模块中,通过学习的采样矩阵测量图像逐块。在重建阶段,将测量投射到双杆中。一个是用于通过卷积建模邻域关系的CNN杆,另一个是用于采用全球自我关注机制的变压器杆。双分支结构是并发,并且本地特征和全局表示在不同的分辨率下融合,以最大化功能的互补性。此外,我们探索一个渐进的战略和基于窗口的变压器块,以降低参数和计算复杂性。实验结果表明了基于专用变压器的架构进行压缩感测的有效性,与不同数据集的最先进方法相比,实现了卓越的性能。
translated by 谷歌翻译
在图像压缩传感(CS)中将深层神经网络纳入了最近在多媒体技术和应用中的密集关注。随着深网接近,直接从CS测量中了解了反映射,重建速度的速度明显快于常规CS算法。但是,对于现有的基于网络的方法,CS采样过程必须映射单独的网络模型。由于封锁伪像,这可能会降低图像CS的性能,尤其是当将多个采样率分配给图像中的不同块时。在本文中,我们通过利用与性能显着超过当前最新方法的间隔相关性来开发一个用于基于块的图像CS的多通道深网。显着的性能改善归因于块近似,但完全去除了封闭伪像的图像。具体而言,使用我们的多通道结构,可以在单个模型中重建具有多种采样率的图像块。然后,最初重建的块能够将其重新组装成完整的图像中,以通过展开基于手动设计的基于手动设计的CS恢复算法来改善恢复的图像。实验结果表明,所提出的方法在客观指标和主观视觉图像质量方面优于最先进的CS方法。我们的源代码可从https://github.com/siwangzhou/deepbcs获得。
translated by 谷歌翻译
基于深度网络的图像压缩感(CS)近年来引起了很多关注。然而,现有的基于深网络的CS方案以逐个块的方式重建目标图像,其导致严重的块伪像或将深网络训练为黑盒,其带来了对图像先验知识的有限识别。本文提出了一种使用非局部神经网络(NL-CSNet)的新型图像CS框架,其利用具有深度网络的非本地自相似子,提高重建质量。在所提出的NL-CSNET中,构造了两个非本地子网,用于分别利用测量域中的非本地自相似子系统和多尺度特征域。具体地,在测量域的子网中,建立用于更好的初始重建的不同图像块的测量之间的长距离依赖性。类似地,在多尺度特征域的子网中,在深度重建的多尺度空间中探讨了密集特征表示之间的亲和力。此外,开发了一种新的损失函数以增强非本地表示之间的耦合,这也能够实现NL-CSNet的端到端训练。广泛的实验表明,NL-CSNet优于现有的最先进的CS方法,同时保持快速的计算速度。
translated by 谷歌翻译
通过获取有限的测量,近来有很多关于加速MRI中的数据采集过程的兴趣。部署经常复杂的重建算法以在这种设置中保持高图像质量。在这项工作中,我们提出了一种使用卷积神经网络,MNET的数据驱动采样器,为每个扫描对象提供自适应的特定于对象的采样模式。该网络针对每个物体观察非常有限的低频k空间数据,并且在一个达到高图像重建质量的情况下快速预测所需的下采样模式。我们提出了一个伴随的交流型训练框架,其掩模后向过程可以有效地生成用于采样器网络的训练标签并共同列举图像重建网络。 FastMri膝关节数据集上的实验结果证明了提出的学习欠采样网络在四倍和八倍加速下产生对象特定的掩模的能力,该八倍的加速度实现了优于几种现有方案的卓越图像重建性能。拟议的联合采样和重建学习框架的源代码可在https://github.com/zhishenhuang/mri获得。
translated by 谷歌翻译
通过大量多输入和多重输出实现的许多性能增长取决于发射机(基站)下链路通道状态信息(CSI)的准确性,这通常是通过在接收器(用户终端)估算并馈入的。到发射器。 CSI反馈的开销占据了大量的上行链路带宽资源,尤其是当传输天线数量较大时。基于深度学习(DL)的CSI反馈是指基于DL的自动编码器的CSI压缩和重建,并且可以大大减少反馈开销。在本文中,提供了有关该主题的最新研究的全面概述,首先是在CSI反馈中广泛使用的基本DL概念,然后对一些现有的基于DL的反馈作品进行分类和描述。重点是新型的神经网络体系结构和沟通专家知识的利用来提高CSI反馈准确性。还介绍了有关CSI反馈和CSI反馈与其他通信模块的联合设计的作品,并讨论了一些实际问题,包括培训数据集收集,在线培训,复杂性,概括和标准化效果。在本文的最后,确定了与未来无线通信系统中基于DL的CSI反馈相关的一些挑战和潜在的研究方向。
translated by 谷歌翻译
单像素成像(SPI)是一种新型成像技术,其工作原理基于压缩感(CS)理论。在SPI中,数据是通过一系列压缩测量获得的,并重建了相应的图像。通常,重建算法(例如基础追求)依赖于图像中的稀疏性假设。但是,深度学习的最新进展发现了其在重建CS图像中的用途。尽管在模拟中显示出令人鼓舞的结果,但通常不清楚如何在实际的SPI设置中实现这种算法。在本文中,我们证明了对SPI图像的重建以及块压缩感(BCS)的重建。我们还提出了一个基于卷积神经网络的新型重建模型,该模型优于其他竞争性CS重建算法。此外,通过将BCS合并到我们的深度学习模型中,我们能够重建以上图像大小以上的任何大小的图像。此外,我们表明我们的模型能够重建从SPI设置获得的图像,同时接受自然图像进行训练,这可能与SPI图像大不相同。这为CS重建来自各个领域的图像重建的深度学习模型的可行性打开了机会。
translated by 谷歌翻译
最近,一些研究在图像压缩感测(CS)任务中应用了深层卷积神经网络(CNN),以提高重建质量。但是,卷积层通常具有一个小的接受场。因此,使用CNN捕获远程像素相关性是具有挑战性的,这限制了其在Image CS任务中的重建性能。考虑到这一限制,我们为图像CS任务(称为uformer-ics)提出了一个U形变压器。我们通过将CS的先验投影知识集成到原始变压器块中,然后使用基于投影基于投影的变压器块和残留卷积块构建对称重建模型来开发一个基于投影的变压器块。与以前的基于CNN的CS方法相比,只能利用本地图像特征,建议的重建模型可以同时利用图像的局部特征和远程依赖性,以及CS理论的先前投影知识。此外,我们设计了一个自适应采样模型,该模型可以基于块稀疏性自适应采样图像块,这可以确保压缩结果保留在固定采样比下原始图像的最大可能信息。提出的UFORFORFOR-ICS是一个端到端框架,同时学习采样和重建过程。实验结果表明,与现有的基于深度学习的CS方法相比,它的重建性能明显优于重建性能。
translated by 谷歌翻译
With the aim of developing a fast yet accurate algorithm for compressive sensing (CS) reconstruction of natural images, we combine in this paper the merits of two existing categories of CS methods: the structure insights of traditional optimization-based methods and the speed of recent network-based ones. Specifically, we propose a novel structured deep network, dubbed ISTA-Net, which is inspired by the Iterative Shrinkage-Thresholding Algorithm (ISTA) for optimizing a general 1 norm CS reconstruction model. To cast ISTA into deep network form, we develop an effective strategy to solve the proximal mapping associated with the sparsity-inducing regularizer using nonlinear transforms. All the parameters in ISTA-Net (e.g. nonlinear transforms, shrinkage thresholds, step sizes, etc.) are learned end-to-end, rather than being hand-crafted. Moreover, considering that the residuals of natural images are more compressible, an enhanced version of ISTA-Net in the residual domain, dubbed ISTA-Net + , is derived to further improve CS reconstruction. Extensive CS experiments demonstrate that the proposed ISTA-Nets outperform existing state-of-the-art optimization-based and networkbased CS methods by large margins, while maintaining fast computational speed. Our source codes are available: http://jianzhang.tech/projects/ISTA-Net.
translated by 谷歌翻译
高光谱成像是各种应用的基本成像模型,尤其是遥感,农业和医学。灵感来自现有的高光谱相机,可以慢,昂贵或笨重,从低预算快照测量中重建高光谱图像(HSIS)已经绘制了广泛的关注。通过将截断的数值优化算法映射到具有固定数量的相位的网络中,近期深度展开网络(DUNS)用于光谱快照压缩感应(SCI)已经取得了显着的成功。然而,DUNS远未通过缺乏交叉相位相互作用和适应性参数调整来达到有限的工业应用范围。在本文中,我们提出了一种新的高光谱可分解的重建和最佳采样深度网络,用于SCI,被称为HeroSnet,其中包括在ISTA展开框架下的几个阶段。每个阶段可以灵活地模拟感测矩阵,并在梯度下降步骤中进行上下文调整步骤,以及分层熔断器,并在近侧映射步骤中有效地恢复当前HSI帧的隐藏状态。同时,终端实现硬件友好的最佳二进制掩模,以进一步提高重建性能。最后,我们的Herosnet被验证以优于大幅边缘的模拟和实际数据集的最先进的方法。
translated by 谷歌翻译
目的:并行成像通过用一系列接收器线圈获取其他灵敏度信息,从而加速了磁共振成像(MRI)数据,从而降低了相位编码步骤。压缩传感磁共振成像(CS-MRI)在医学成像领域中获得了普及,因为其数据要求较少,而不是平行成像。并行成像和压缩传感(CS)均通过最大程度地减少K空间中捕获的数据量来加快传统MRI获取。由于采集时间与样品的数量成反比,因此从缩短的K空间样品中的图像的反向形成会导致收购更快,但具有混乱的伪像。本文提出了一种新型的生成对抗网络(GAN),即雷德格尔(Recgan-gr)受到多模式损失的监督,以消除重建的图像。方法:与现有的GAN网络相反,我们提出的方法引入了一种新型的发电机网络,即与双域损耗函数集成的弹药网络,包括加权幅度和相位损耗函数以及基于平行成像的损失,即Grappa一致性损失。提出了K空间校正块,以使GAN网络自动化生成不必要的数据,从而使重建过程的收敛性更快。结果:全面的结果表明,拟议的Recgan-GR在基于GAN的方法中的PSNR有4 dB的改善,并且在文献中可用的传统最先进的CNN方法中有2 dB的改进。结论和意义:拟议的工作有助于显着改善低保留数据的图像质量,从而更快地获取了5倍或10倍。
translated by 谷歌翻译
Dynamic magnetic resonance image reconstruction from incomplete k-space data has generated great research interest due to its capability to reduce scan time. Never-theless, the reconstruction problem is still challenging due to its ill-posed nature. Recently, diffusion models espe-cially score-based generative models have exhibited great potential in algorithm robustness and usage flexi-bility. Moreover, the unified framework through the variance exploding stochastic differential equation (VE-SDE) is proposed to enable new sampling methods and further extend the capabilities of score-based gener-ative models. Therefore, by taking advantage of the uni-fied framework, we proposed a k-space and image Du-al-Domain collaborative Universal Generative Model (DD-UGM) which combines the score-based prior with low-rank regularization penalty to reconstruct highly under-sampled measurements. More precisely, we extract prior components from both image and k-space domains via a universal generative model and adaptively handle these prior components for faster processing while maintaining good generation quality. Experimental comparisons demonstrated the noise reduction and detail preservation abilities of the proposed method. Much more than that, DD-UGM can reconstruct data of differ-ent frames by only training a single frame image, which reflects the flexibility of the proposed model.
translated by 谷歌翻译
随着深度学习(DL)的出现,超分辨率(SR)也已成为一个蓬勃发展的研究领域。然而,尽管结果有希望,但该领域仍然面临需要进一步研究的挑战,例如,允许灵活地采样,更有效的损失功能和更好的评估指标。我们根据最近的进步来回顾SR的域,并检查最新模型,例如扩散(DDPM)和基于变压器的SR模型。我们对SR中使用的当代策略进行了批判性讨论,并确定了有前途但未开发的研究方向。我们通过纳入该领域的最新发展,例如不确定性驱动的损失,小波网络,神经体系结构搜索,新颖的归一化方法和最新评估技术来补充先前的调查。我们还为整章中的模型和方法提供了几种可视化,以促进对该领域趋势的全球理解。最终,这篇综述旨在帮助研究人员推动DL应用于SR的界限。
translated by 谷歌翻译
压缩传感(CS)一直在加速磁共振成像(MRI)采集过程中的关键作用。随着人工智能的复苏,深神经网络和CS算法正在集成以重新定义快速MRI的领域。过去几年目睹了基于深度学习的CS技术的复杂性,多样性和表现的大量增长,这些技术致力于快速MRI。在该荟萃分析中,我们系统地审查了快速MRI的深度学习的CS技术,描述了关键模型设计,突出突破,并讨论了有希望的方向。我们还介绍了一个综合分析框架和分类系统,以评估深度学习在基于CS的加速度的MRI的关键作用。
translated by 谷歌翻译
Deconvolution is a widely used strategy to mitigate the blurring and noisy degradation of hyperspectral images~(HSI) generated by the acquisition devices. This issue is usually addressed by solving an ill-posed inverse problem. While investigating proper image priors can enhance the deconvolution performance, it is not trivial to handcraft a powerful regularizer and to set the regularization parameters. To address these issues, in this paper we introduce a tuning-free Plug-and-Play (PnP) algorithm for HSI deconvolution. Specifically, we use the alternating direction method of multipliers (ADMM) to decompose the optimization problem into two iterative sub-problems. A flexible blind 3D denoising network (B3DDN) is designed to learn deep priors and to solve the denoising sub-problem with different noise levels. A measure of 3D residual whiteness is then investigated to adjust the penalty parameters when solving the quadratic sub-problems, as well as a stopping criterion. Experimental results on both simulated and real-world data with ground-truth demonstrate the superiority of the proposed method.
translated by 谷歌翻译
深度学习模型是压缩光谱成像(CSI)恢复的最新模型。这些方法使用深神网络(DNN)作为图像发生器来学习从压缩测量到光谱图像的非线性映射。例如,深频谱先验方法在优化算法中使用卷积自动编码器网络(CAE)通过使用非线性表示来恢复光谱图像。但是,CAE训练与恢复问题分离,这不能保证CSI问题的光谱图像的最佳表示。这项工作提出了联合非线性表示和恢复网络(JR2NET),将表示和恢复任务链接到单个优化问题。 JR2NET由ADMM公式遵循优化启发的网络组成,该网络学习了非线性低维表示,并同时执行通过端到端方法训练的光谱图像恢复。实验结果表明,该方法的优势在PSNR中的改进高达2.57 dB,并且性能比最新方法快2000倍。
translated by 谷歌翻译