通过获取有限的测量,近来有很多关于加速MRI中的数据采集过程的兴趣。部署经常复杂的重建算法以在这种设置中保持高图像质量。在这项工作中,我们提出了一种使用卷积神经网络,MNET的数据驱动采样器,为每个扫描对象提供自适应的特定于对象的采样模式。该网络针对每个物体观察非常有限的低频k空间数据,并且在一个达到高图像重建质量的情况下快速预测所需的下采样模式。我们提出了一个伴随的交流型训练框架,其掩模后向过程可以有效地生成用于采样器网络的训练标签并共同列举图像重建网络。 FastMri膝关节数据集上的实验结果证明了提出的学习欠采样网络在四倍和八倍加速下产生对象特定的掩模的能力,该八倍的加速度实现了优于几种现有方案的卓越图像重建性能。拟议的联合采样和重建学习框架的源代码可在https://github.com/zhishenhuang/mri获得。
translated by 谷歌翻译
通过在测量$ \ kappa $ -space中进行亚采样,加速MRI缩短了采集时间。从次采样测量中恢复高保真解剖图像需要两个组件之间的密切合作:(1)选择子采样模式的采样器和(2)从不完整测量中恢复图像的重建器。在本文中,我们利用了MRI测量的顺序性质,并提出了一个完全可区分的框架,该框架共同学习与重建策略的顺序采样策略。该共同设计的框架能够在获取过程中适应,以捕获特定目标的最有用的测量结果。 FastMRI膝盖数据集的实验结果表明,所提出的方法在抽样过程中成功利用了中间信息来提高重建性能。特别是,我们提出的方法可以胜过当前最新的$ \ kappa $ - 空间采样基线,超过96%的测试样品。我们还研究了顺序采样和共同设计策略的个人和集体利益。
translated by 谷歌翻译
物理驱动的深度学习方法已成为计算磁共振成像(MRI)问题的强大工具,将重建性能推向新限制。本文概述了将物理信息纳入基于学习的MRI重建中的最新发展。我们考虑了用于计算MRI的线性和非线性正向模型的逆问题,并回顾了解决这些方法的经典方法。然后,我们专注于物理驱动的深度学习方法,涵盖了物理驱动的损失功能,插件方法,生成模型和展开的网络。我们重点介绍了特定于领域的挑战,例如神经网络的实现和复杂值的构建基块,以及具有线性和非线性正向模型的MRI转换应用。最后,我们讨论常见问题和开放挑战,并与物理驱动的学习与医学成像管道中的其他下游任务相结合时,与物理驱动的学习的重要性联系在一起。
translated by 谷歌翻译
基于分数的扩散模型为使用数据分布的梯度建模图像提供了一种强大的方法。利用学到的分数函数为先验,在这里,我们引入了一种从条件分布中进行测量的方法,以便可以轻松地用于求解成像中的反问题,尤其是用于加速MRI。简而言之,我们通过denoising得分匹配来训练连续的时间依赖分数函数。然后,在推论阶段,我们在数值SDE求解器和数据一致性投影步骤之间进行迭代以实现重建。我们的模型仅需要用于训练的幅度图像,但能够重建复杂值数据,甚至扩展到并行成像。所提出的方法是不可知论到子采样模式,可以与任何采样方案一起使用。同样,由于其生成性质,我们的方法可以量化不确定性,这是标准回归设置不可能的。最重要的是,我们的方法还具有非常强大的性能,甚至击败了经过全面监督训练的模型。通过广泛的实验,我们在质量和实用性方面验证了我们方法的优势。
translated by 谷歌翻译
减少磁共振(MR)图像采集时间可能会使MR检查更容易获得。包括深度学习模型在内的先前艺术已致力于解决长期MRI成像时间的问题。最近,深层生成模型在算法鲁棒性和使用灵活性方面具有巨大的潜力。然而,无法直接学习或使用任何现有方案。此外,还值得研究的是,深层生成模型如何在混合域上很好地工作。在这项工作中,通过利用基于深度能量的模型,我们提出了一个K空间和图像域协作生成模型,以全面估算从采样量未采样的测量中的MR数据。与最先进的实验比较表明,所提出的混合方法的重建精度较小,在不同的加速因子下更稳定。
translated by 谷歌翻译
目的:并行成像通过用一系列接收器线圈获取其他灵敏度信息,从而加速了磁共振成像(MRI)数据,从而降低了相位编码步骤。压缩传感磁共振成像(CS-MRI)在医学成像领域中获得了普及,因为其数据要求较少,而不是平行成像。并行成像和压缩传感(CS)均通过最大程度地减少K空间中捕获的数据量来加快传统MRI获取。由于采集时间与样品的数量成反比,因此从缩短的K空间样品中的图像的反向形成会导致收购更快,但具有混乱的伪像。本文提出了一种新型的生成对抗网络(GAN),即雷德格尔(Recgan-gr)受到多模式损失的监督,以消除重建的图像。方法:与现有的GAN网络相反,我们提出的方法引入了一种新型的发电机网络,即与双域损耗函数集成的弹药网络,包括加权幅度和相位损耗函数以及基于平行成像的损失,即Grappa一致性损失。提出了K空间校正块,以使GAN网络自动化生成不必要的数据,从而使重建过程的收敛性更快。结果:全面的结果表明,拟议的Recgan-GR在基于GAN的方法中的PSNR有4 dB的改善,并且在文献中可用的传统最先进的CNN方法中有2 dB的改进。结论和意义:拟议的工作有助于显着改善低保留数据的图像质量,从而更快地获取了5倍或10倍。
translated by 谷歌翻译
我们提出了一个基于一般学习的框架,用于解决非平滑和非凸图像重建问题。我们将正则函数建模为$ l_ {2,1} $ norm的组成,并将平滑但非convex功能映射参数化为深卷积神经网络。我们通过利用Nesterov的平滑技术和残留学习的概念来开发一种可证明的趋同的下降型算法来解决非平滑非概念最小化问题,并学习网络参数,以使算法的输出与培训数据中的参考匹配。我们的方法用途广泛,因为人们可以将各种现代网络结构用于正规化,而所得网络继承了算法的保证收敛性。我们还表明,所提出的网络是参数有效的,其性能与实践中各种图像重建问题中的最新方法相比有利。
translated by 谷歌翻译
磁共振成像可以产生人体解剖和生理学的详细图像,可以帮助医生诊断和治疗肿瘤等病理。然而,MRI遭受了非常长的收购时间,使其易于患者运动伪影并限制其潜力以提供动态治疗。诸如并行成像和压缩感测的常规方法允许通过使用多个接收器线圈获取更少的MRI数据来改变MR图像来增加MRI采集速度。深度学习的最新进步与平行成像和压缩传感技术相结合,具有从高度加速的MRI数据产生高保真重建。在这项工作中,我们通过利用卷积复发网络的特性和展开算法来解决复发变分网络(RevurrentVarnet)的加速改变网络(RevurrentVarnet)的任务,提出了一种基于深入的深度学习的反问题解决者。 RevurrentVarnet由多个块组成,每个块都负责梯度下降优化算法的一个展开迭代,以解决逆问题。与传统方法相反,优化步骤在观察域($ k $ -space)而不是图像域中进行。每次反复出的Varnet块都会通过观察到的$ k $ -space,并由数据一致性术语和复制单元组成,它将作为输入的隐藏状态和前一个块的预测。我们所提出的方法实现了新的最新状态,定性和定量重建导致来自公共多通道脑数据集的5倍和10倍加速数据,优于以前的传统和基于深度学习的方法。我们将在公共存储库上释放所有型号代码和基线。
translated by 谷歌翻译
我们提出了明确结合频率和图像特征表示的神经网络层,并表明它们可以用作频率空间数据重建的多功能构建块。我们的工作是由MRI习得引起的挑战所激发的,该挑战是信号是所需图像的傅立叶变换。提出的联合学习方案既可以校正频率空间的天然伪像,又可以操纵图像空间表示,以重建网络各层的相干图像结构。这与图像重建的大多数当前深度学习方法形成鲜明对比,该方法分别处理频率和图像空间特征,并且通常在两个空间之一中仅运行。我们证明了联合卷积学习在各种任务中的优势,包括运动校正,denosing,从不足采样的采集中重建,以及对模拟和现实世界多层MRI数据的混合采样和运动校正。联合模型在所有任务和数据集中都始终如一地产生高质量的输出图像。当整合到具有物理启发的数据一致性约束的最终采样重建的情况下,将其集成到艺术风化的优化网络中时,提议的体系结构显着改善了优化景观,从而产生了减少训练时间的数量级。该结果表明,联合表示特别适合深度学习网络中的MRI信号。我们的代码和预算模型可在https://github.com/nalinimsingh/interlacer上公开获得。
translated by 谷歌翻译
Accelerated MRI aims to find a pair of samplers and reconstructors to reduce acquisition time while maintaining the reconstruction quality. Most of the existing works focus on finding either sparse samplers with a fixed reconstructor or finding reconstructors with a fixed sampler. Recently, people have begun to consider learning samplers and reconstructors jointly. In this paper, we propose an alternating training framework for finding a good pair of samplers and reconstructors via deep reinforcement learning (RL). In particular, we propose a novel sparse-reward Partially Observed Markov Decision Process (POMDP) to formulate the MRI sampling trajectory. Compared to the existing works that utilize dense-reward POMDPs, the proposed sparse-reward POMDP is more computationally efficient and has a provable advantage over dense-reward POMDPs. We evaluate our method on fastMRI, a public benchmark MRI dataset, and it achieves state-of-the-art reconstruction performances.
translated by 谷歌翻译
基于深度学习的技术实现最新的技术会导致广泛的图像重建任务,例如压缩传感。这些方法几乎总是具有超参数,例如在优化损耗函数中平衡不同项的权重系数。典型的方法是训练模型,以通过某些经验或理论理由确定的超参数设置。因此,在推理时,模型只能计算与预定的超参数值相对应的重建。在这项工作中,我们提出了一种基于超网络的方法,称为HyperRecon,以训练不可知论到超参数设置的重建模型。在推理时,HyperRecon可以有效地产生不同的重建,每个重建都对应于不同的高参数值。在此框架中,用户有权根据自己的判断选择最有用的输出。我们使用两个大规模和公共可用的MRI数据集演示了压缩感测,超分辨率和去索任务的方法。我们的代码可在https://github.com/alanqrwang/hyhyperrecon上找到。
translated by 谷歌翻译
Dynamic magnetic resonance image reconstruction from incomplete k-space data has generated great research interest due to its capability to reduce scan time. Never-theless, the reconstruction problem is still challenging due to its ill-posed nature. Recently, diffusion models espe-cially score-based generative models have exhibited great potential in algorithm robustness and usage flexi-bility. Moreover, the unified framework through the variance exploding stochastic differential equation (VE-SDE) is proposed to enable new sampling methods and further extend the capabilities of score-based gener-ative models. Therefore, by taking advantage of the uni-fied framework, we proposed a k-space and image Du-al-Domain collaborative Universal Generative Model (DD-UGM) which combines the score-based prior with low-rank regularization penalty to reconstruct highly under-sampled measurements. More precisely, we extract prior components from both image and k-space domains via a universal generative model and adaptively handle these prior components for faster processing while maintaining good generation quality. Experimental comparisons demonstrated the noise reduction and detail preservation abilities of the proposed method. Much more than that, DD-UGM can reconstruct data of differ-ent frames by only training a single frame image, which reflects the flexibility of the proposed model.
translated by 谷歌翻译
近年来,基于深度学习的平行成像(PI)取得了巨大进展,以加速磁共振成像(MRI)。然而,现有方法的性能和鲁棒性仍然可以是不受欢迎的。在这项工作中,我们建议通过柔性PI重建,创建的重量K-Space Genera-Tive模型(WKGM)来探索K空间域学习。具体而言,WKGM是一种通用的K空间域模型,在其中有效地纳入了K空间加权技术和高维空间增强设计,用于基于得分的Genererative模型训练,从而实现良好和强大的重建。此外,WKGM具有灵活性,因此可以与各种传统的K空间PI模型协同结合,从而产生基于学习的先验以产生高保真重建。在具有不同采样模式和交流电因子的数据集上进行实验性重新构建表明,WKGM可以通过先验良好的K-Space生成剂获得最新的重建结果。
translated by 谷歌翻译
深度学习方法已成功用于各种计算机视觉任务。受到成功的启发,已经在磁共振成像(MRI)重建中探索了深度学习。特别是,整合深度学习和基于模型的优化方法已显示出很大的优势。但是,对于高重建质量,通常需要大量标记的培训数据,这对于某些MRI应用来说是具有挑战性的。在本文中,我们提出了一种名为DUREN-NET的新型重建方法,该方法可以通过组合无监督的DeNoising网络和插件方法来为MR图像重建提供可解释的无监督学习。我们的目标是通过添加明确的先验利用成像物理学来提高无监督学习的重建性能。具体而言,使用denoising(红色)正规化实现了MRI重建网络的杠杆作用。实验结果表明,所提出的方法需要减少训练数据的数量才能达到高重建质量。
translated by 谷歌翻译
Image reconstruction using deep learning algorithms offers improved reconstruction quality and lower reconstruction time than classical compressed sensing and model-based algorithms. Unfortunately, clean and fully sampled ground-truth data to train the deep networks is often unavailable in several applications, restricting the applicability of the above methods. We introduce a novel metric termed the ENsemble Stein's Unbiased Risk Estimate (ENSURE) framework, which can be used to train deep image reconstruction algorithms without fully sampled and noise-free images. The proposed framework is the generalization of the classical SURE and GSURE formulation to the setting where the images are sampled by different measurement operators, chosen randomly from a set. We evaluate the expectation of the GSURE loss functions over the sampling patterns to obtain the ENSURE loss function. We show that this loss is an unbiased estimate for the true mean-square error, which offers a better alternative to GSURE, which only offers an unbiased estimate for the projected error. Our experiments show that the networks trained with this loss function can offer reconstructions comparable to the supervised setting. While we demonstrate this framework in the context of MR image recovery, the ENSURE framework is generally applicable to arbitrary inverse problems.
translated by 谷歌翻译
磁共振(MR)图像重建来自高度缺点$ K $ -space数据在加速MR成像(MRI)技术中至关重要。近年来,基于深度学习的方法在这项任务中表现出很大的潜力。本文提出了一种学习的MR图像重建半二次分割算法,并在展开的深度学习网络架构中实现算法。我们比较我们提出的方法对针对DC-CNN和LPDNET的公共心先生数据集的性能,我们的方法在定量结果和定性结果中表现出其他方法,具有更少的模型参数和更快的重建速度。最后,我们扩大了我们的模型,实现了卓越的重建质量,并且改善为1.76美元$ 276 $ 274美元的LPDNET以5美元\倍率为5美元的峰值信噪比。我们的方法的代码在https://github.com/hellopipu/hqs-net上公开使用。
translated by 谷歌翻译
在过去的几年中,提出了多种基于深神经网络(DNN)的方法,以解决来自未取消采样的“ K-Space”(傅立叶域)数据的挑战性不足的反向问题。然而,反对采集过程中的变化和解剖学分布的不稳定性表明,与其经典的对应物相比,DNN体系结构对相关物理模型的概括不佳。较差的概括有效地排除了DNN适用于临床环境中不足采样的MRI重建。我们通过引入物理培养的DNN体系结构和培训方法来提高DNN方法的泛化MRI重建能力。除了模型体系结构中观察到的数据外,我们的体系结构还编码底面采样掩码,并采用适当的培训方法,该方法使用与各种无底采样掩码生成的数据一起鼓励模型概括了未散布的MRI重建问题。我们通过对公开可用的快速MRI数据集进行了广泛的实验,证明了我们的方法的附加价值。我们的物理提出的方法达到了增强的概括能力,这使得与获得的稳健性和解剖学分布的变化相比,尤其是在病理区域中,与香草DNN方法和DNN进行了显着提高,并在病理区域中进行了显着提高,并且受过培训的DNN训练,并接受了强烈的掩盖掩模的增强。接受训练的模型和代码以复制我们的实验,将在接受后用于研究目的。
translated by 谷歌翻译
The data consistency for the physical forward model is crucial in inverse problems, especially in MR imaging reconstruction. The standard way is to unroll an iterative algorithm into a neural network with a forward model embedded. The forward model always changes in clinical practice, so the learning component's entanglement with the forward model makes the reconstruction hard to generalize. The proposed method is more generalizable for different MR acquisition settings by separating the forward model from the deep learning component. The deep learning-based proximal gradient descent was proposed to create a learned regularization term independent of the forward model. We applied the one-time trained regularization term to different MR acquisition settings to validate the proposed method and compared the reconstruction with the commonly used $\ell_1$ regularization. We showed ~3 dB improvement in the peak signal to noise ratio, compared with conventional $\ell_1$ regularized reconstruction. We demonstrated the flexibility of the proposed method in choosing different undersampling patterns. We also evaluated the effect of parameter tuning for the deep learning regularization.
translated by 谷歌翻译
本文解决了利益区域(ROI)计算机断层扫描(CT)的图像重建问题。尽管基于模型的迭代方法可用于此问题,但由于乏味的参数化和缓慢的收敛性,它们的实用性通常受到限制。另外,当保留的先验不完全适合溶液空间时,可以获得不足的溶液。深度学习方法提供了一种快速的替代方法,从大型数据集中利用信息,因此可以达到高重建质量。但是,这些方法通常依赖于不考虑成像系统物理学的黑匣子,而且它们缺乏可解释性通常会感到沮丧。在两种方法的十字路口,最近都提出了展开的深度学习技术。它们将模型的物理和迭代优化算法纳入神经网络设计中,从而在各种应用中均具有出色的性能。本文介绍了一种新颖的,展开的深度学习方法,称为U-RDBFB,为ROI CT重建而设计为有限的数据。由于强大的非凸数据保真功能与稀疏性诱导正则化功能相结合,因此有效地处理了很少的截断数据。然后,嵌入在迭代重新加权方案中的块双重前向(DBFB)算法的迭代将在神经网络体系结构上展开,从而以监督的方式学习各种参数。我们的实验显示了对各种最新方法的改进,包括基于模型的迭代方案,深度学习体系结构和深度展开的方法。
translated by 谷歌翻译
最近关于其他方式的核化图像T1辅助MRI重建的研究表明,进一步加速MRI收购其他方式的潜力。大多数最先进的方法通过开发用于固定的欠采样模式的网络架构来实现改进,而不完全利用方式之间的互补信息。尽管可以简单地修改现有的下采样模式学习算法以允许完全采样的T1加权MR图像来辅助模式学习,但是可以实现重建任务的显着改进。为此,我们提出了一个迭代框架,优化了MRI获取的另一种方式的采样下采样模式,可以在不同的下抽样因子中补充完全采样的T1加权MR图像,同时共同优化T1辅助MRI重建模型。具体地,我们所提出的方法利用两种模式之间的潜在信息的差异来确定可以最大化T1加权MR图像的辅助功率在改善MRI重建时最大化的采样模式。与常用的下采样模式和最先进的方法相比,我们在公共数据集中展示了我们在公共数据集上的学习的下采样模式的卓越表现,可以联合优化重建网络和欠采样模式以8倍的取样因子。
translated by 谷歌翻译