Deep unfolding networks (DUNs) have proven to be a viable approach to compressive sensing (CS). In this work, we propose a DUN called low-rank CS network (LR-CSNet) for natural image CS. Real-world image patches are often well-represented by low-rank approximations. LR-CSNet exploits this property by adding a low-rank prior to the CS optimization task. We derive a corresponding iterative optimization procedure using variable splitting, which is then translated to a new DUN architecture. The architecture uses low-rank generation modules (LRGMs), which learn low-rank matrix factorizations, as well as gradient descent and proximal mappings (GDPMs), which are proposed to extract high-frequency features to refine image details. In addition, the deep features generated at each reconstruction stage in the DUN are transferred between stages to boost the performance. Our extensive experiments on three widely considered datasets demonstrate the promising performance of LR-CSNet compared to state-of-the-art methods in natural image CS.
translated by 谷歌翻译
将优化算法映射到神经网络中,深度展开的网络(DUNS)在压缩传感(CS)方面取得了令人印象深刻的成功。从优化的角度来看,Duns从迭代步骤中继承了一个明确且可解释的结构。但是,从神经网络设计的角度来看,大多数现有的Dun是基于传统图像域展开而固有地建立的,该图像域的展开将一通道图像作为相邻阶段之间的输入和输出,从而导致信息传输能力不足,并且不可避免地会损失图像。细节。在本文中,为了打破上述瓶颈,我们首先提出了一个广义的双域优化框架,该框架是逆成像的一般性,并将(1)图像域和(2)卷积编码域先验的优点整合到限制解决方案空间中的可行区域。通过将所提出的框架展开到深神经网络中,我们进一步设计了一种新型的双域深卷积编码网络(D3C2-NET),用于CS成像,具有通过所有展开的阶段传输高通量特征级图像表示的能力。关于自然图像和MR图像的实验表明,与其他最先进的艺术相比,我们的D3C2-NET实现更高的性能和更好的准确性权衡权衡。
translated by 谷歌翻译
通过将某些优化求解器与深神经网络相结合,深层展开网络(DUN)近年来引起了图像压缩感(CS)的广泛关注。但是,现有DUN中仍然存在几个问题:1)对于每次迭代,通常采用一个简单的堆叠卷积网络,这显然限制了这些模型的表现力。 2)培训完成后,对于任何输入内容,大多数现有DUNS的超参数均已固定,这大大削弱了其适应性。在本文中,通过展开快速迭代的收缩阈值算法(FISTA),提出了一种新颖的快速分层dun,被称为Fhdun,用于图像压缩传感,开发出了精心设计的层次结构,以合作探索富人的上下文,以探索富人的上下文。多尺度空间中的信息。为了进一步增强适应性,在我们的框架中开发了一系列的超参数生成网络,以根据输入内容动态生产相应的最佳超参数。此外,由于Fista的加速政策,新嵌入的加速模块使拟议的Fhdun节省了超过50%的迭代循环,以抵抗最近的Duns。广泛的CS实验表明,所提出的FHDUN优于现有的最新CS方法,同时保持较少的迭代。
translated by 谷歌翻译
With the aim of developing a fast yet accurate algorithm for compressive sensing (CS) reconstruction of natural images, we combine in this paper the merits of two existing categories of CS methods: the structure insights of traditional optimization-based methods and the speed of recent network-based ones. Specifically, we propose a novel structured deep network, dubbed ISTA-Net, which is inspired by the Iterative Shrinkage-Thresholding Algorithm (ISTA) for optimizing a general 1 norm CS reconstruction model. To cast ISTA into deep network form, we develop an effective strategy to solve the proximal mapping associated with the sparsity-inducing regularizer using nonlinear transforms. All the parameters in ISTA-Net (e.g. nonlinear transforms, shrinkage thresholds, step sizes, etc.) are learned end-to-end, rather than being hand-crafted. Moreover, considering that the residuals of natural images are more compressible, an enhanced version of ISTA-Net in the residual domain, dubbed ISTA-Net + , is derived to further improve CS reconstruction. Extensive CS experiments demonstrate that the proposed ISTA-Nets outperform existing state-of-the-art optimization-based and networkbased CS methods by large margins, while maintaining fast computational speed. Our source codes are available: http://jianzhang.tech/projects/ISTA-Net.
translated by 谷歌翻译
基于深度网络的图像压缩感(CS)近年来引起了很多关注。然而,现有的基于深网络的CS方案以逐个块的方式重建目标图像,其导致严重的块伪像或将深网络训练为黑盒,其带来了对图像先验知识的有限识别。本文提出了一种使用非局部神经网络(NL-CSNet)的新型图像CS框架,其利用具有深度网络的非本地自相似子,提高重建质量。在所提出的NL-CSNET中,构造了两个非本地子网,用于分别利用测量域中的非本地自相似子系统和多尺度特征域。具体地,在测量域的子网中,建立用于更好的初始重建的不同图像块的测量之间的长距离依赖性。类似地,在多尺度特征域的子网中,在深度重建的多尺度空间中探讨了密集特征表示之间的亲和力。此外,开发了一种新的损失函数以增强非本地表示之间的耦合,这也能够实现NL-CSNet的端到端训练。广泛的实验表明,NL-CSNet优于现有的最先进的CS方法,同时保持快速的计算速度。
translated by 谷歌翻译
与传统CS方法相比,基于深度学习(DL)的压缩传感(CS)已被应用于图像重建的更好性能。但是,大多数现有的DL方法都利用逐个块测量,每个测量块分别恢复,这引入了重建的有害阻塞效应。此外,这些方法的神经元接受场被设计为每一层的大小相同,这只能收集单尺度的空间信息,并对重建过程产生负面影响。本文提出了一个新的框架,称为CS测量和重建的多尺度扩张卷积神经网络(MSDCNN)。在测量期间,我们直接从训练有素的测量网络中获得所有测量,该测量网络采用了完全卷积结构,并通过输入图像与重建网络共同训练。它不必将其切成块,从而有效地避免了块效应。在重建期间,我们提出了多尺度特征提取(MFE)体系结构,以模仿人类视觉系统以捕获同一功能映射的多尺度特征,从而增强了框架的图像特征提取能力并提高了框架的性能并提高了框架的性能。影像重建。在MFE中,有多个并行卷积通道以获取多尺度特征信息。然后,将多尺度功能信息融合在一起,并以高质量重建原始图像。我们的实验结果表明,根据PSNR和SSIM,该提出的方法对最新方法的性能有利。
translated by 谷歌翻译
卷积神经网络(CNNS)成功地进行了压缩图像感测。然而,由于局部性和重量共享的归纳偏差,卷积操作证明了建模远程依赖性的内在限制。变压器,最初作为序列到序列模型设计,在捕获由于基于自我关注的架构而捕获的全局背景中,即使它可以配备有限的本地化能力。本文提出了一种混合框架,一个混合框架,其集成了从CNN提供的借用的优点以及变压器提供的全局上下文,以获得增强的表示学习。所提出的方法是由自适应采样和恢复组成的端到端压缩图像感测方法。在采样模块中,通过学习的采样矩阵测量图像逐块。在重建阶段,将测量投射到双杆中。一个是用于通过卷积建模邻域关系的CNN杆,另一个是用于采用全球自我关注机制的变压器杆。双分支结构是并发,并且本地特征和全局表示在不同的分辨率下融合,以最大化功能的互补性。此外,我们探索一个渐进的战略和基于窗口的变压器块,以降低参数和计算复杂性。实验结果表明了基于专用变压器的架构进行压缩感测的有效性,与不同数据集的最先进方法相比,实现了卓越的性能。
translated by 谷歌翻译
我们提出了一个基于一般学习的框架,用于解决非平滑和非凸图像重建问题。我们将正则函数建模为$ l_ {2,1} $ norm的组成,并将平滑但非convex功能映射参数化为深卷积神经网络。我们通过利用Nesterov的平滑技术和残留学习的概念来开发一种可证明的趋同的下降型算法来解决非平滑非概念最小化问题,并学习网络参数,以使算法的输出与培训数据中的参考匹配。我们的方法用途广泛,因为人们可以将各种现代网络结构用于正规化,而所得网络继承了算法的保证收敛性。我们还表明,所提出的网络是参数有效的,其性能与实践中各种图像重建问题中的最新方法相比有利。
translated by 谷歌翻译
为了更有效地解决图像压缩传感(CS)问题,我们提出了一种新颖的内容可扩展的网络,该网络称为CASNET,该网络共同实现了自适应采样率分配,精细的粒状可伸缩性和高质量的重建。我们首先采用数据驱动的显着性检测器来评估不同图像区域的重要性,并提出基于显着性的块比率汇总(BRA)策略来分配采样率。然后开发一个统一的可学习生成矩阵,以产生具有有序结构的任何CS比的采样矩阵。 CASNET配备了由显着性信息和防止伪影的多块训练方案引导的优化启发的恢复子网,CASNET与一个单个模型共同重建以各种采样率采样的图像阻止。为了加速训练收敛并改善网络鲁棒性,我们提出了一种基于SVD的初始化方案和随机转换增强(RTE)策略,在没有引入额外参数的情况下是可扩展的。所有CASNET组件都可以组合和端到端学习。我们进一步提供了四个阶段的实施,用于评估和实际部署。实验表明,CASNET大量优于其他CS网络,从而验证了其组件和策略之间的协作和相互支持。代码可在https://github.com/guaishou74851/casnet上找到。
translated by 谷歌翻译
由低级别正则化驱动的深度学习方法在动态磁共振(MR)成像中实现了有吸引力的性能。但是,这些方法中的大多数代表了手工制作的核标准的低级别先验,该规范无法通过固定的正则化参数准确地近似整个数据集的低排名先验。在本文中,我们提出了一种学习动态MR成像的低级方法。特别是,我们将部分可分离(PS)模型的半季度分裂方法(HQS)算法传输到网络中,其中低级别以可学习的空空间变换自适应地表征。心脏CINE数据集的实验表明,所提出的模型的表现优于最新的压缩传感(CS)方法和现有的深度学习方法,既有定量和质量上的深度学习方法。
translated by 谷歌翻译
Tensor robust principal component analysis (TRPCA) is a promising way for low-rank tensor recovery, which minimizes the convex surrogate of tensor rank by shrinking each tensor singular values equally. However, for real-world visual data, large singular values represent more signifiant information than small singular values. In this paper, we propose a nonconvex TRPCA (N-TRPCA) model based on the tensor adjustable logarithmic norm. Unlike TRPCA, our N-TRPCA can adaptively shrink small singular values more and shrink large singular values less. In addition, TRPCA assumes that the whole data tensor is of low rank. This assumption is hardly satisfied in practice for natural visual data, restricting the capability of TRPCA to recover the edges and texture details from noisy images and videos. To this end, we integrate nonlocal self-similarity into N-TRPCA, and further develop a nonconvex and nonlocal TRPCA (NN-TRPCA) model. Specifically, similar nonlocal patches are grouped as a tensor and then each group tensor is recovered by our N-TRPCA. Since the patches in one group are highly correlated, all group tensors have strong low-rank property, leading to an improvement of recovery performance. Experimental results demonstrate that the proposed NN-TRPCA outperforms some existing TRPCA methods in visual data recovery. The demo code is available at https://github.com/qguo2010/NN-TRPCA.
translated by 谷歌翻译
现有的深层压缩传感(CS)方法要么忽略自适应在线优化,要么依赖重建过程中昂贵的迭代优化器。这项工作探索了一个新颖的图像CS框架,具有复发性的结构约束,称为r $^2 $ cs-net。 R $^2 $ CS-NET首先通过新颖的复发神经网络逐步优化了获得的采样。然后,级联的残留卷积网络从优化的潜在表示中充分重建图像。作为第一个Deep CS框架有效地桥接自适应在线优化,R $^2 $ CS-NET将在线优化的鲁棒性与深度学习方法的效率和非线性容量相结合。信号相关已通过网络体系结构解决。自适应感测性的性质进一步使其成为通过利用通道相关性的彩色图像CS的理想候选者。数值实验验证了所提出的复发潜在优化设计不仅可以实现适应动机,而且在同一场景中胜过经典的长期记忆(LSTM)体系结构。总体框架表明了硬件实施可行性,并具有现有的DEEP CS基准中的领先鲁棒性和概括能力。
translated by 谷歌翻译
高光谱成像是各种应用的基本成像模型,尤其是遥感,农业和医学。灵感来自现有的高光谱相机,可以慢,昂贵或笨重,从低预算快照测量中重建高光谱图像(HSIS)已经绘制了广泛的关注。通过将截断的数值优化算法映射到具有固定数量的相位的网络中,近期深度展开网络(DUNS)用于光谱快照压缩感应(SCI)已经取得了显着的成功。然而,DUNS远未通过缺乏交叉相位相互作用和适应性参数调整来达到有限的工业应用范围。在本文中,我们提出了一种新的高光谱可分解的重建和最佳采样深度网络,用于SCI,被称为HeroSnet,其中包括在ISTA展开框架下的几个阶段。每个阶段可以灵活地模拟感测矩阵,并在梯度下降步骤中进行上下文调整步骤,以及分层熔断器,并在近侧映射步骤中有效地恢复当前HSI帧的隐藏状态。同时,终端实现硬件友好的最佳二进制掩模,以进一步提高重建性能。最后,我们的Herosnet被验证以优于大幅边缘的模拟和实际数据集的最先进的方法。
translated by 谷歌翻译
具有高分辨率(HR)的磁共振成像(MRI)提供了更详细的信息,以进行准确的诊断和定量图像分析。尽管取得了重大进展,但大多数现有的医学图像重建网络都有两个缺陷:1)所有这些缺陷都是在黑盒原理中设计的,因此缺乏足够的解释性并进一步限制其实际应用。可解释的神经网络模型引起了重大兴趣,因为它们在处理医学图像时增强了临床实践所需的可信赖性。 2)大多数现有的SR重建方法仅使用单个对比度或使用简单的多对比度融合机制,从而忽略了对SR改进至关重要的不同对比度之间的复杂关系。为了解决这些问题,在本文中,提出了一种新颖的模型引导的可解释的深层展开网络(MGDUN),用于医学图像SR重建。模型引导的图像SR重建方法求解手动设计的目标函数以重建HR MRI。我们通过将MRI观察矩阵和显式多对比度关系矩阵考虑到末端到端优化期间,将迭代的MGDUN算法展示为新型模型引导的深层展开网络。多对比度IXI数据集和Brats 2019数据集进行了广泛的实验,证明了我们提出的模型的优势。
translated by 谷歌翻译
最近,从图像中提取的不同组件的低秩属性已经考虑在MAN Hypspectral图像去噪方法中。然而,这些方法通常将3D矩阵或1D向量展开,以利用现有信息,例如非识别空间自相似性(NSS)和全局光谱相关(GSC),其破坏了高光谱图像的内在结构相关性(HSI) )因此导致恢复质量差。此外,由于在HSI的原始高维空间中的矩阵和张量的矩阵和张量的参与,其中大多数受到重大计算负担问题。我们使用子空间表示和加权低级张量正则化(SWLRTR)进入模型中以消除高光谱图像中的混合噪声。具体地,为了在光谱频带中使用GSC,将噪声HSI投影到简化计算的低维子空间中。之后,引入加权的低级张量正则化术语以表征缩减图像子空间中的前导。此外,我们设计了一种基于交替最小化的算法来解决非耦合问题。模拟和实时数据集的实验表明,SWLRTR方法比定量和视觉上的其他高光谱去噪方法更好。
translated by 谷歌翻译
Although recent deep learning methods, especially generative models, have shown good performance in fast magnetic resonance imaging, there is still much room for improvement in high-dimensional generation. Considering that internal dimensions in score-based generative models have a critical impact on estimating the gradient of the data distribution, we present a new idea, low-rank tensor assisted k-space generative model (LR-KGM), for parallel imaging reconstruction. This means that we transform original prior information into high-dimensional prior information for learning. More specifically, the multi-channel data is constructed into a large Hankel matrix and the matrix is subsequently folded into tensor for prior learning. In the testing phase, the low-rank rotation strategy is utilized to impose low-rank constraints on tensor output of the generative network. Furthermore, we alternately use traditional generative iterations and low-rank high-dimensional tensor iterations for reconstruction. Experimental comparisons with the state-of-the-arts demonstrated that the proposed LR-KGM method achieved better performance.
translated by 谷歌翻译
磁共振成像是临床诊断的重要工具。但是,它遭受了漫长的收购时间。深度学习的利用,尤其是深层生成模型,在磁共振成像中提供了积极的加速和更好的重建。然而,学习数据分布作为先验知识并从有限数据中重建图像仍然具有挑战性。在这项工作中,我们提出了一种新颖的Hankel-K空间生成模型(HKGM),该模型可以从一个k-空间数据的训练集中生成样品。在先前的学习阶段,我们首先从k空间数据构建一个大的Hankel矩阵,然后从大型Hankel矩阵中提取多个结构化的K空间贴片,以捕获不同斑块之间的内部分布。从Hankel矩阵中提取斑块使生成模型可以从冗余和低级别的数据空间中学习。在迭代重建阶段,可以观察到所需的解决方案遵守学识渊博的先验知识。通过将其作为生成模型的输入来更新中间重建解决方案。然后,通过对测量数据对其Hankel矩阵和数据一致性组合施加低排名的惩罚来替代地进行操作。实验结果证实,单个K空间数据中斑块的内部统计数据具有足够的信息来学习强大的生成模型并提供最新的重建。
translated by 谷歌翻译
尽管利用张量低级别先验的方法是在高维数据处理中蓬勃发展并获得了令人满意的性能,但它们在动态磁共振(MR)图像重建中的应用受到限制。在本文中,我们集中于基于快速傅立叶变换(FFT)的张量奇异值分解(T-SVD),并且仅提供了FFT域中的确定且有限的张量低级别先验密切的数据和FFT域匹配。通过将FFT推广到转换的T-SVD的任意统一转换并提出了转换的张量核标准(TTNN),我们引入了一个基于TTNN的灵活模型,能够利用张量的低量量,在变换的域中的张量低级别。更大的转换空间并精心设计了基于乘数交替方向方法(ADMM)的迭代优化算法,该算法进一步将其进一步展开为基于模型的深层展开的重建网络,以学习转换后的张量低率之前(t $^2) $ LR-NET)。卷积神经网络(CNN)被合并到T $^2 $ LR-NET中,以从动态MR Image数据集中学习最匹配的转换。展开的重建网络还通过利用CNN提取的特征域中的低级别先验来提供有关低级先验利用率的新观点。两个心脏CINE MR数据集的实验结果表明,与基于最新优化和基于网络的最先进的基于网络的方法相比,提出的框架可以提供改进的恢复结果。
translated by 谷歌翻译
最近,一些研究在图像压缩感测(CS)任务中应用了深层卷积神经网络(CNN),以提高重建质量。但是,卷积层通常具有一个小的接受场。因此,使用CNN捕获远程像素相关性是具有挑战性的,这限制了其在Image CS任务中的重建性能。考虑到这一限制,我们为图像CS任务(称为uformer-ics)提出了一个U形变压器。我们通过将CS的先验投影知识集成到原始变压器块中,然后使用基于投影基于投影的变压器块和残留卷积块构建对称重建模型来开发一个基于投影的变压器块。与以前的基于CNN的CS方法相比,只能利用本地图像特征,建议的重建模型可以同时利用图像的局部特征和远程依赖性,以及CS理论的先前投影知识。此外,我们设计了一个自适应采样模型,该模型可以基于块稀疏性自适应采样图像块,这可以确保压缩结果保留在固定采样比下原始图像的最大可能信息。提出的UFORFORFOR-ICS是一个端到端框架,同时学习采样和重建过程。实验结果表明,与现有的基于深度学习的CS方法相比,它的重建性能明显优于重建性能。
translated by 谷歌翻译
基于深度学习(DL)的高光谱图像(HSIS)去噪方法直接学习观察到的嘈杂图像和底层清洁图像之间的非线性映射。他们通常不考虑HSIS的物理特征,因此使他们缺乏了解他们的去噪机制的关键。为了解决这个问题,我们为HSI去噪提出了一种新颖的模型指导可解释网络。具体而言,完全考虑HSI的空间冗余,光谱低秩和光谱空间特性,我们首先建立基于子空间的多维稀疏模型。该模型首先将观察到的HSIS投入到低维正交子空间,然后表示具有多维字典的投影图像。之后,该模型展开到名为SMDS-Net的端到端网络中,其基本模块与模型的去噪程序无缝连接。这使得SMDS-Net传达清晰的物理意义,即学习HSIS的低级别和稀疏性。最后,通过端到端培训获得包括词典和阈值处理的所有关键变量。广泛的实验和综合分析证实了我们对最先进的HSI去噪方法的方法的去噪能力和可解释性。
translated by 谷歌翻译