单像素成像(SPI)是一种新型成像技术,其工作原理基于压缩感(CS)理论。在SPI中,数据是通过一系列压缩测量获得的,并重建了相应的图像。通常,重建算法(例如基础追求)依赖于图像中的稀疏性假设。但是,深度学习的最新进展发现了其在重建CS图像中的用途。尽管在模拟中显示出令人鼓舞的结果,但通常不清楚如何在实际的SPI设置中实现这种算法。在本文中,我们证明了对SPI图像的重建以及块压缩感(BCS)的重建。我们还提出了一个基于卷积神经网络的新型重建模型,该模型优于其他竞争性CS重建算法。此外,通过将BCS合并到我们的深度学习模型中,我们能够重建以上图像大小以上的任何大小的图像。此外,我们表明我们的模型能够重建从SPI设置获得的图像,同时接受自然图像进行训练,这可能与SPI图像大不相同。这为CS重建来自各个领域的图像重建的深度学习模型的可行性打开了机会。
translated by 谷歌翻译
最近,一些研究在图像压缩感测(CS)任务中应用了深层卷积神经网络(CNN),以提高重建质量。但是,卷积层通常具有一个小的接受场。因此,使用CNN捕获远程像素相关性是具有挑战性的,这限制了其在Image CS任务中的重建性能。考虑到这一限制,我们为图像CS任务(称为uformer-ics)提出了一个U形变压器。我们通过将CS的先验投影知识集成到原始变压器块中,然后使用基于投影基于投影的变压器块和残留卷积块构建对称重建模型来开发一个基于投影的变压器块。与以前的基于CNN的CS方法相比,只能利用本地图像特征,建议的重建模型可以同时利用图像的局部特征和远程依赖性,以及CS理论的先前投影知识。此外,我们设计了一个自适应采样模型,该模型可以基于块稀疏性自适应采样图像块,这可以确保压缩结果保留在固定采样比下原始图像的最大可能信息。提出的UFORFORFOR-ICS是一个端到端框架,同时学习采样和重建过程。实验结果表明,与现有的基于深度学习的CS方法相比,它的重建性能明显优于重建性能。
translated by 谷歌翻译
与传统CS方法相比,基于深度学习(DL)的压缩传感(CS)已被应用于图像重建的更好性能。但是,大多数现有的DL方法都利用逐个块测量,每个测量块分别恢复,这引入了重建的有害阻塞效应。此外,这些方法的神经元接受场被设计为每一层的大小相同,这只能收集单尺度的空间信息,并对重建过程产生负面影响。本文提出了一个新的框架,称为CS测量和重建的多尺度扩张卷积神经网络(MSDCNN)。在测量期间,我们直接从训练有素的测量网络中获得所有测量,该测量网络采用了完全卷积结构,并通过输入图像与重建网络共同训练。它不必将其切成块,从而有效地避免了块效应。在重建期间,我们提出了多尺度特征提取(MFE)体系结构,以模仿人类视觉系统以捕获同一功能映射的多尺度特征,从而增强了框架的图像特征提取能力并提高了框架的性能并提高了框架的性能。影像重建。在MFE中,有多个并行卷积通道以获取多尺度特征信息。然后,将多尺度功能信息融合在一起,并以高质量重建原始图像。我们的实验结果表明,根据PSNR和SSIM,该提出的方法对最新方法的性能有利。
translated by 谷歌翻译
在许多图像处理任务中,深度学习方法的成功,最近还将深度学习方法引入了阶段检索问题。这些方法与传统的迭代优化方法不同,因为它们通常只需要一个强度测量,并且可以实时重建相位图像。但是,由于巨大的领域差异,这些方法给出的重建图像的质量仍然有很大的改进空间来满足一般应用要求。在本文中,我们设计了一种新型的深神经网络结构,名为Sisprnet,以基于单个傅立叶强度测量值进行相检索。为了有效利用测量的光谱信息,我们建议使用多层感知器(MLP)作为前端提出一个新的特征提取单元。它允许将输入强度图像的所有像素一起考虑,以探索其全局表示。 MLP的大小经过精心设计,以促进代表性特征的提取,同时减少噪音和异常值。辍学层还可以减轻训练MLP的过度拟合问题。为了促进重建图像中的全局相关性,将自我注意力的机制引入了提议的Sisprnet的上采样和重建(UR)块。这些UR块被插入残留的学习结构中,以防止由于其复杂的层结构而导致的较弱的信息流和消失的梯度问题。使用线性相关幅度和相位的仅相位图像和图像的不同测试数据集对所提出的模型进行了广泛的评估。在光学实验平台上进行了实验,以了解在实用环境中工作时不同深度学习方法的性能。
translated by 谷歌翻译
光学成像通常用于行业和学术界的科学和技术应用。在图像传感中,通过数字化图像的计算分析来执行一个测量,例如对象的位置。新兴的图像感应范例通过设计光学组件来执行不进行成像而是编码,从而打破了数据收集和分析之间的描述。通过将图像光学地编码为适合有效分析后的压缩,低维的潜在空间,这些图像传感器可以以更少的像素和更少的光子来工作,从而可以允许更高的直通量,较低的延迟操作。光学神经网络(ONNS)提供了一个平台,用于处理模拟,光学域中的数据。然而,基于ONN的传感器仅限于线性处理,但是非线性是深度的先决条件,而多层NNS在许多任务上的表现都大大优于浅色。在这里,我们使用商业图像增强器作为平行光电子,光学到光学非线性激活函数,实现用于图像传感的多层预处理器。我们证明,非线性ONN前处理器可以达到高达800:1的压缩率,同时仍然可以在几个代表性的计算机视觉任务中高精度,包括机器视觉基准测试,流程度图像分类以及对对象中对象的识别,场景。在所有情况下,我们都会发现ONN的非线性和深度使其能够胜过纯线性ONN编码器。尽管我们的实验专门用于ONN传感器的光线图像,但替代ONN平台应促进一系列ONN传感器。这些ONN传感器可能通过在空间,时间和/或光谱尺寸中预处处理的光学信息来超越常规传感器,并可能具有相干和量子质量,所有这些都在光学域中。
translated by 谷歌翻译
Spatially varying spectral modulation can be implemented using a liquid crystal spatial light modulator (SLM) since it provides an array of liquid crystal cells, each of which can be purposed to act as a programmable spectral filter array. However, such an optical setup suffers from strong optical aberrations due to the unintended phase modulation, precluding spectral modulation at high spatial resolutions. In this work, we propose a novel computational approach for the practical implementation of phase SLMs for implementing spatially varying spectral filters. We provide a careful and systematic analysis of the aberrations arising out of phase SLMs for the purposes of spatially varying spectral modulation. The analysis naturally leads us to a set of "good patterns" that minimize the optical aberrations. We then train a deep network that overcomes any residual aberrations, thereby achieving ideal spectral modulation at high spatial resolution. We show a number of unique operating points with our prototype including dynamic spectral filtering, material classification, and single- and multi-image hyperspectral imaging.
translated by 谷歌翻译
卷积神经网络(CNNS)成功地进行了压缩图像感测。然而,由于局部性和重量共享的归纳偏差,卷积操作证明了建模远程依赖性的内在限制。变压器,最初作为序列到序列模型设计,在捕获由于基于自我关注的架构而捕获的全局背景中,即使它可以配备有限的本地化能力。本文提出了一种混合框架,一个混合框架,其集成了从CNN提供的借用的优点以及变压器提供的全局上下文,以获得增强的表示学习。所提出的方法是由自适应采样和恢复组成的端到端压缩图像感测方法。在采样模块中,通过学习的采样矩阵测量图像逐块。在重建阶段,将测量投射到双杆中。一个是用于通过卷积建模邻域关系的CNN杆,另一个是用于采用全球自我关注机制的变压器杆。双分支结构是并发,并且本地特征和全局表示在不同的分辨率下融合,以最大化功能的互补性。此外,我们探索一个渐进的战略和基于窗口的变压器块,以降低参数和计算复杂性。实验结果表明了基于专用变压器的架构进行压缩感测的有效性,与不同数据集的最先进方法相比,实现了卓越的性能。
translated by 谷歌翻译
相位检索(PR)是从其仅限强度测量中恢复复杂值信号的长期挑战,由于其在数字成像中的广泛应用,引起了很大的关注。最近,开发了基于深度学习的方法,这些方法在单发PR中取得了成功。这些方法需要单个傅立叶强度测量,而无需对测量数据施加任何其他约束。然而,由于PR问题的输入和输出域之间存在很大的差异,香草深神经网络(DNN)并没有提供良好的性能。物理信息的方法试图将傅立叶强度测量结果纳入提高重建精度的迭代方法。但是,它需要一个冗长的计算过程,并且仍然无法保证准确性。此外,其中许多方法都在模拟数据上工作,这些数据忽略了一些常见问题,例如实用光学PR系统中的饱和度和量化错误。在本文中,提出了一种新型的物理驱动的多尺度DNN结构,称为PPRNET。与其他基于深度学习的PR方法类似,PPRNET仅需要一个傅立叶强度测量。物理驱动的是,网络被指导遵循不同尺度的傅立叶强度测量,以提高重建精度。 PPRNET具有前馈结构,可以端到端训练。因此,它比传统物理驱动的PR方法更快,更准确。进行了实用光学平台上的大量模拟和实验。结果证明了拟议的PPRNET比传统的基于基于学习的PR方法的优势和实用性。
translated by 谷歌翻译
光学系统的可区分模拟可以与基于深度学习的重建网络结合使用,以通过端到端(E2E)优化光学编码器和深度解码器来实现高性能计算成像。这使成像应用程序(例如3D定位显微镜,深度估计和无透镜摄影)通过优化局部光学编码器。更具挑战性的计算成像应用,例如将3D卷压入单个2D图像的3D快照显微镜,需要高度非本地光学编码器。我们表明,现有的深网解码器具有局部性偏差,可防止这种高度非本地光学编码器的优化。我们使用全球内核傅里叶卷积神经网络(Fouriernets)基于浅神经网络体系结构的解码器来解决此问题。我们表明,在高度非本地分散镜头光学编码器捕获的照片中,傅立叶网络超过了现有的基于网络的解码器。此外,我们表明傅里叶可以对3D快照显微镜的高度非本地光学编码器进行E2E优化。通过将傅立叶网和大规模多GPU可区分的光学模拟相结合,我们能够优化非本地光学编码器170 $ \ times $ \ times $ tos 7372 $ \ times $ \ times $ \ times $比以前的最新状态,并证明了ROI的潜力-type特定的光学编码使用可编程显微镜。
translated by 谷歌翻译
在图像压缩传感(CS)中将深层神经网络纳入了最近在多媒体技术和应用中的密集关注。随着深网接近,直接从CS测量中了解了反映射,重建速度的速度明显快于常规CS算法。但是,对于现有的基于网络的方法,CS采样过程必须映射单独的网络模型。由于封锁伪像,这可能会降低图像CS的性能,尤其是当将多个采样率分配给图像中的不同块时。在本文中,我们通过利用与性能显着超过当前最新方法的间隔相关性来开发一个用于基于块的图像CS的多通道深网。显着的性能改善归因于块近似,但完全去除了封闭伪像的图像。具体而言,使用我们的多通道结构,可以在单个模型中重建具有多种采样率的图像块。然后,最初重建的块能够将其重新组装成完整的图像中,以通过展开基于手动设计的基于手动设计的CS恢复算法来改善恢复的图像。实验结果表明,所提出的方法在客观指标和主观视觉图像质量方面优于最先进的CS方法。我们的源代码可从https://github.com/siwangzhou/deepbcs获得。
translated by 谷歌翻译
图像超分辨率(SR)是重要的图像处理方法之一,可改善计算机视野领域的图像分辨率。在过去的二十年中,在超级分辨率领域取得了重大进展,尤其是通过使用深度学习方法。这项调查是为了在深度学习的角度进行详细的调查,对单像超分辨率的最新进展进行详细的调查,同时还将告知图像超分辨率的初始经典方法。该调查将图像SR方法分类为四个类别,即经典方法,基于学习的方法,无监督学习的方法和特定领域的SR方法。我们还介绍了SR的问题,以提供有关图像质量指标,可用参考数据集和SR挑战的直觉。使用参考数据集评估基于深度学习的方法。一些审查的最先进的图像SR方法包括增强的深SR网络(EDSR),周期循环gan(Cincgan),多尺度残留网络(MSRN),Meta残留密度网络(META-RDN) ,反复反射网络(RBPN),二阶注意网络(SAN),SR反馈网络(SRFBN)和基于小波的残留注意网络(WRAN)。最后,这项调查以研究人员将解决SR的未来方向和趋势和开放问题的未来方向和趋势。
translated by 谷歌翻译
We present a simple but novel hybrid approach to hyperspectral data cube reconstruction from computed tomography imaging spectrometry (CTIS) images that sequentially combines neural networks and the iterative Expectation Maximization (EM) algorithm. We train and test the ability of the method to reconstruct data cubes of $100\times100\times25$ and $100\times100\times100$ voxels, corresponding to 25 and 100 spectral channels, from simulated CTIS images generated by our CTIS simulator. The hybrid approach utilizes the inherent strength of the Convolutional Neural Network (CNN) with regard to noise and its ability to yield consistent reconstructions and make use of the EM algorithm's ability to generalize to spectral images of any object without training. The hybrid approach achieves better performance than both the CNNs and EM alone for seen (included in CNN training) and unseen (excluded from CNN training) cubes for both the 25- and 100-channel cases. For the 25 spectral channels, the improvements from CNN to the hybrid model (CNN + EM) in terms of the mean-squared errors are between 14-26%. For 100 spectral channels, the improvements between 19-40% are attained with the largest improvement of 40% for the unseen data, to which the CNNs are not exposed during the training.
translated by 谷歌翻译
现有的深层压缩传感(CS)方法要么忽略自适应在线优化,要么依赖重建过程中昂贵的迭代优化器。这项工作探索了一个新颖的图像CS框架,具有复发性的结构约束,称为r $^2 $ cs-net。 R $^2 $ CS-NET首先通过新颖的复发神经网络逐步优化了获得的采样。然后,级联的残留卷积网络从优化的潜在表示中充分重建图像。作为第一个Deep CS框架有效地桥接自适应在线优化,R $^2 $ CS-NET将在线优化的鲁棒性与深度学习方法的效率和非线性容量相结合。信号相关已通过网络体系结构解决。自适应感测性的性质进一步使其成为通过利用通道相关性的彩色图像CS的理想候选者。数值实验验证了所提出的复发潜在优化设计不仅可以实现适应动机,而且在同一场景中胜过经典的长期记忆(LSTM)体系结构。总体框架表明了硬件实施可行性,并具有现有的DEEP CS基准中的领先鲁棒性和概括能力。
translated by 谷歌翻译
Most Deep Learning (DL) based Compressed Sensing (DCS) algorithms adopt a single neural network for signal reconstruction, and fail to jointly consider the influences of the sampling operation for reconstruction. In this paper, we propose unified framework, which jointly considers the sampling and reconstruction process for image compressive sensing based on well-designed cascade neural networks. Two sub-networks, which are the sampling sub-network and the reconstruction sub-network, are included in the proposed framework. In the sampling sub-network, an adaptive full connected layer instead of the traditional random matrix is used to mimic the sampling operator. In the reconstruction sub-network, a cascade network combining stacked denoising autoencoder (SDA) and convolutional neural network (CNN) is designed to reconstruct signals. The SDA is used to solve the signal mapping problem and the signals are initially reconstructed. Furthermore, CNN is used to fully recover the structure and texture features of the image to obtain better reconstruction performance. Extensive experiments show that this framework outperforms many other state-of-the-art methods, especially at low sampling rates.
translated by 谷歌翻译
在许多计算机视觉应用程序中,对高动态范围(HDR)场景的能力至关重要。然而,传统传感器的动态范围基本上受其井容量的限制,导致明亮场景部件的饱和度。为了克服这种限制,新兴传感器提供了用于编码入射辐照度的像素处理能力。在最有前途的编码方案中,模数包装,其导致计算机拍摄场景由来自包裹的低动态(LDR)传感器图像的辐照法展开算法计算的计算摄影问题。在这里,我们设计了一种基于神经网络的算法,优于先前的辐照度展示方法,更重要的是,我们设计了一种感知的激发灵感的“螳螂”编码方案,从而更有效地将HDR场景包装到LDR传感器中。结合我们的重建框架,Mantissacam在模型快照HDR成像方法中实现了最先进的结果。我们展示了我们在模拟中的效果,并显示了用可编程传感器实现的原型尾涂的初步结果。
translated by 谷歌翻译
对于现代高分辨率成像传感器,像素箱在低光条件下进行,在需要高帧速率时。为了恢复原始空间分辨率,可以应用单图像超分辨率技术来升高。为了在升级后达到更高的图像质量,我们提出了一种使用Tetromino形像素的新颖融合概念。在这样做时,我们首次在文献中使用四极像素来研究重建质量。不是在文献中提出的传感器布局所提出的不同类型的四聚体,我们表明,使用仅由四个T-四胞蛋白酶组成的小重复单元就足够了。为了重建,我们使用局部完全连接的重建(LFCR)网络以及来自压缩传感领域的两个经典重建方法。使用LFCR网络与所提出的Tetromino布局组合,我们在PSNR,SSSIM方面实现了优越的图像质量,并且使用非常深的超分辨率(VDSR)网络与传统的单图像超分辨率相比。对于PSNR,实现了高达+1.​​92 dB的增益。
translated by 谷歌翻译
捕获场景的空间和角度信息的光场(LF)成像无疑是有利于许多应用。尽管已经提出了用于LF采集的各种技术,但是在角度和空间上实现的既仍然是技术挑战。本文,提出了一种基于学习的方法,其应用于3D末面图像(EPI)以重建高分辨率LF。通过2级超分辨率框架,所提出的方法有效地解决了各种LF超分辨率(SR)问题,即空间SR,Angular SR和角空间SR。虽然第一阶段向Up-Sample EPI体积提供灵活的选择,但是由新型EPI体积的细化网络(EVRN)组成的第二阶段,基本上提高了高分辨率EPI体积的质量。从7个发布的数据集的90个挑战合成和实际灯田场景的广泛评估表明,所提出的方法优于空间和角度超分辨率问题的大型延伸的最先进的方法,即平均值峰值信号到噪声比为2.0 dB,1.4 dB和3.14 dB的空间SR $ \ Times 2 $,Spatial SR $ \ Times 4 $和Angular SR。重建的4D光场展示了所有透视图像的平衡性能分布,与先前的作品相比,卓越的视觉质量。
translated by 谷歌翻译
基于掩模的无透镜相机可以是平坦的,薄型和轻质的,这使得它们适用于具有大表面积和任意形状的计算成像系统的新颖设计。尽管最近在无晶体相机的进展中,由于底层测量系统的不良状态,从透镜相机恢复的图像质量往往差。在本文中,我们建议使用编码照明来提高用无透镜相机重建的图像的质量。在我们的成像模型中,场景/物体被多种编码照明模式照亮,因为无透镜摄像机记录传感器测量。我们设计并测试了许多照明模式,并观察到变速点(和相关的正交)模式提供了最佳的整体性能。我们提出了一种快速和低复杂性的恢复算法,可利用我们系统中的可分离性和块对角线结构。我们提出了仿真结果和硬件实验结果,以证明我们的提出方法可以显着提高重建质量。
translated by 谷歌翻译
压缩学习(CL)是一个新兴框架,可以通过压缩传感(CS)和机器学习来整合信号的收购,直接在少量测量上进行推理任务。它可以是经典图像域方法的有希望的替代方法,并且在保存和计算效率方面具有很大的优势。但是,以前对CL的尝试不仅限于固定的CS比率,该比率缺乏灵活性,而且还限于MNIST/CIFAR样数据集,并且不扩展到复杂的现实世界高分辨率(HR)数据或视觉任务。在本文中,提出了一个新型的基于变压器的压缩学习框架,该框架在具有任意CS比率的大规模图像上(称为TransCl)。具体而言,TransCL首先采用了基于可学习的基于块的压缩感测的策略,并提出了一种灵活的线性投影策略,以使CL能够以任意CS比率的有效逐块方式在大规模图像上进行。然后,关于从所有块作为序列的CS测量值,将部署一个基于纯变压器的骨架来执行具有各种面向任务的头部的视觉任务。我们的足够分析表明,TRANSCL对干扰和对任意CS比率的强大适应性表现出强烈的抵抗力。复杂HR数据的广泛实验表明,所提出的TransCl可以在图像分类和语义分割任务中实现最新性能。特别是,CS比率为$ 10 \%$的TRANSCL几乎可以获得与直接在原始数据上运行时的性能,即使CS极低的CS比率为$ 1 \%$ $,也可以获得令人满意的性能。我们提出的TransCl的源代码可在\ url {https://github.com/mc-e/transcl/}上获得。
translated by 谷歌翻译
数字全息图是一种3D成像技术,它通过向物体发射激光束并测量衍射波形的强度,称为全息图。对象的3D形状可以通过对捕获的全息图的数值分析并恢复发生的相位来获得。最近,深度学习(DL)方法已被用于更准确的全息处理。但是,大多数监督方法都需要大型数据集来训练该模型,由于样本或隐私问题的缺乏,大多数DH应用程序都很少获得。存在一些基于DL的恢复方法,不依赖配对图像的大数据集。尽管如此,这些方法中的大多数经常忽略控制波传播的基本物理法。这些方法提供了一个黑盒操作,无法解释,可以推广和转移到其他样本和应用程序。在这项工作中,我们提出了一种基于生成对抗网络的新DL体系结构,该架构使用判别网络来实现重建质量的语义度量,同时使用生成网络作为函数近似器来建模全息图的倒数。我们使用模拟退火驱动的渐进式掩蔽模块将恢复图像的背景部分强加于回收图像的背景部分,以增强重建质量。所提出的方法是一种表现出高传递性对类似样品的可传递性的方法之一,该方法促进了其在时间敏感应用程序中的快速部署,而无需重新培训网络。结果表明,重建质量(约5 dB PSNR增益)和噪声的鲁棒性(PSNR与噪声增加率降低约50%)的竞争者方法有了显着改善。
translated by 谷歌翻译