Most Deep Learning (DL) based Compressed Sensing (DCS) algorithms adopt a single neural network for signal reconstruction, and fail to jointly consider the influences of the sampling operation for reconstruction. In this paper, we propose unified framework, which jointly considers the sampling and reconstruction process for image compressive sensing based on well-designed cascade neural networks. Two sub-networks, which are the sampling sub-network and the reconstruction sub-network, are included in the proposed framework. In the sampling sub-network, an adaptive full connected layer instead of the traditional random matrix is used to mimic the sampling operator. In the reconstruction sub-network, a cascade network combining stacked denoising autoencoder (SDA) and convolutional neural network (CNN) is designed to reconstruct signals. The SDA is used to solve the signal mapping problem and the signals are initially reconstructed. Furthermore, CNN is used to fully recover the structure and texture features of the image to obtain better reconstruction performance. Extensive experiments show that this framework outperforms many other state-of-the-art methods, especially at low sampling rates.
translated by 谷歌翻译
与传统CS方法相比,基于深度学习(DL)的压缩传感(CS)已被应用于图像重建的更好性能。但是,大多数现有的DL方法都利用逐个块测量,每个测量块分别恢复,这引入了重建的有害阻塞效应。此外,这些方法的神经元接受场被设计为每一层的大小相同,这只能收集单尺度的空间信息,并对重建过程产生负面影响。本文提出了一个新的框架,称为CS测量和重建的多尺度扩张卷积神经网络(MSDCNN)。在测量期间,我们直接从训练有素的测量网络中获得所有测量,该测量网络采用了完全卷积结构,并通过输入图像与重建网络共同训练。它不必将其切成块,从而有效地避免了块效应。在重建期间,我们提出了多尺度特征提取(MFE)体系结构,以模仿人类视觉系统以捕获同一功能映射的多尺度特征,从而增强了框架的图像特征提取能力并提高了框架的性能并提高了框架的性能。影像重建。在MFE中,有多个并行卷积通道以获取多尺度特征信息。然后,将多尺度功能信息融合在一起,并以高质量重建原始图像。我们的实验结果表明,根据PSNR和SSIM,该提出的方法对最新方法的性能有利。
translated by 谷歌翻译
在图像压缩传感(CS)中将深层神经网络纳入了最近在多媒体技术和应用中的密集关注。随着深网接近,直接从CS测量中了解了反映射,重建速度的速度明显快于常规CS算法。但是,对于现有的基于网络的方法,CS采样过程必须映射单独的网络模型。由于封锁伪像,这可能会降低图像CS的性能,尤其是当将多个采样率分配给图像中的不同块时。在本文中,我们通过利用与性能显着超过当前最新方法的间隔相关性来开发一个用于基于块的图像CS的多通道深网。显着的性能改善归因于块近似,但完全去除了封闭伪像的图像。具体而言,使用我们的多通道结构,可以在单个模型中重建具有多种采样率的图像块。然后,最初重建的块能够将其重新组装成完整的图像中,以通过展开基于手动设计的基于手动设计的CS恢复算法来改善恢复的图像。实验结果表明,所提出的方法在客观指标和主观视觉图像质量方面优于最先进的CS方法。我们的源代码可从https://github.com/siwangzhou/deepbcs获得。
translated by 谷歌翻译
最近,一些研究在图像压缩感测(CS)任务中应用了深层卷积神经网络(CNN),以提高重建质量。但是,卷积层通常具有一个小的接受场。因此,使用CNN捕获远程像素相关性是具有挑战性的,这限制了其在Image CS任务中的重建性能。考虑到这一限制,我们为图像CS任务(称为uformer-ics)提出了一个U形变压器。我们通过将CS的先验投影知识集成到原始变压器块中,然后使用基于投影基于投影的变压器块和残留卷积块构建对称重建模型来开发一个基于投影的变压器块。与以前的基于CNN的CS方法相比,只能利用本地图像特征,建议的重建模型可以同时利用图像的局部特征和远程依赖性,以及CS理论的先前投影知识。此外,我们设计了一个自适应采样模型,该模型可以基于块稀疏性自适应采样图像块,这可以确保压缩结果保留在固定采样比下原始图像的最大可能信息。提出的UFORFORFOR-ICS是一个端到端框架,同时学习采样和重建过程。实验结果表明,与现有的基于深度学习的CS方法相比,它的重建性能明显优于重建性能。
translated by 谷歌翻译
通过将某些优化求解器与深神经网络相结合,深层展开网络(DUN)近年来引起了图像压缩感(CS)的广泛关注。但是,现有DUN中仍然存在几个问题:1)对于每次迭代,通常采用一个简单的堆叠卷积网络,这显然限制了这些模型的表现力。 2)培训完成后,对于任何输入内容,大多数现有DUNS的超参数均已固定,这大大削弱了其适应性。在本文中,通过展开快速迭代的收缩阈值算法(FISTA),提出了一种新颖的快速分层dun,被称为Fhdun,用于图像压缩传感,开发出了精心设计的层次结构,以合作探索富人的上下文,以探索富人的上下文。多尺度空间中的信息。为了进一步增强适应性,在我们的框架中开发了一系列的超参数生成网络,以根据输入内容动态生产相应的最佳超参数。此外,由于Fista的加速政策,新嵌入的加速模块使拟议的Fhdun节省了超过50%的迭代循环,以抵抗最近的Duns。广泛的CS实验表明,所提出的FHDUN优于现有的最新CS方法,同时保持较少的迭代。
translated by 谷歌翻译
基于深度网络的图像压缩感(CS)近年来引起了很多关注。然而,现有的基于深网络的CS方案以逐个块的方式重建目标图像,其导致严重的块伪像或将深网络训练为黑盒,其带来了对图像先验知识的有限识别。本文提出了一种使用非局部神经网络(NL-CSNet)的新型图像CS框架,其利用具有深度网络的非本地自相似子,提高重建质量。在所提出的NL-CSNET中,构造了两个非本地子网,用于分别利用测量域中的非本地自相似子系统和多尺度特征域。具体地,在测量域的子网中,建立用于更好的初始重建的不同图像块的测量之间的长距离依赖性。类似地,在多尺度特征域的子网中,在深度重建的多尺度空间中探讨了密集特征表示之间的亲和力。此外,开发了一种新的损失函数以增强非本地表示之间的耦合,这也能够实现NL-CSNet的端到端训练。广泛的实验表明,NL-CSNet优于现有的最先进的CS方法,同时保持快速的计算速度。
translated by 谷歌翻译
卷积神经网络(CNNS)成功地进行了压缩图像感测。然而,由于局部性和重量共享的归纳偏差,卷积操作证明了建模远程依赖性的内在限制。变压器,最初作为序列到序列模型设计,在捕获由于基于自我关注的架构而捕获的全局背景中,即使它可以配备有限的本地化能力。本文提出了一种混合框架,一个混合框架,其集成了从CNN提供的借用的优点以及变压器提供的全局上下文,以获得增强的表示学习。所提出的方法是由自适应采样和恢复组成的端到端压缩图像感测方法。在采样模块中,通过学习的采样矩阵测量图像逐块。在重建阶段,将测量投射到双杆中。一个是用于通过卷积建模邻域关系的CNN杆,另一个是用于采用全球自我关注机制的变压器杆。双分支结构是并发,并且本地特征和全局表示在不同的分辨率下融合,以最大化功能的互补性。此外,我们探索一个渐进的战略和基于窗口的变压器块,以降低参数和计算复杂性。实验结果表明了基于专用变压器的架构进行压缩感测的有效性,与不同数据集的最先进方法相比,实现了卓越的性能。
translated by 谷歌翻译
最近,与传统方法相比,基于网络的图像压缩传感方法可实现高重建质量和降低的计算开销。但是,现有方法仅从网络中的部分特征中获得测量结果,并仅将它们用于图像重建。他们忽略了网络\ cite {zeiler2014Visalization}中的低,中和高级特征,所有这些特征对于高质量重建至关重要。此外,仅使用一次测量可能不足以从测量中提取更丰富的信息。为了解决这些问题,我们提出了一个新颖的测量值重复使用卷积压缩感应网络(MR-CCSNET),该网络(MR-CCSNET)采用全球传感模块(GSM)收集所有级别的功能,以实现有效的感应和测量重复使用块(MRB)多次重复使用测量值在多尺度上。最后,三个基准数据集的实验结果表明,我们的模型可以显着胜过最先进的方法。
translated by 谷歌翻译
将优化算法映射到神经网络中,深度展开的网络(DUNS)在压缩传感(CS)方面取得了令人印象深刻的成功。从优化的角度来看,Duns从迭代步骤中继承了一个明确且可解释的结构。但是,从神经网络设计的角度来看,大多数现有的Dun是基于传统图像域展开而固有地建立的,该图像域的展开将一通道图像作为相邻阶段之间的输入和输出,从而导致信息传输能力不足,并且不可避免地会损失图像。细节。在本文中,为了打破上述瓶颈,我们首先提出了一个广义的双域优化框架,该框架是逆成像的一般性,并将(1)图像域和(2)卷积编码域先验的优点整合到限制解决方案空间中的可行区域。通过将所提出的框架展开到深神经网络中,我们进一步设计了一种新型的双域深卷积编码网络(D3C2-NET),用于CS成像,具有通过所有展开的阶段传输高通量特征级图像表示的能力。关于自然图像和MR图像的实验表明,与其他最先进的艺术相比,我们的D3C2-NET实现更高的性能和更好的准确性权衡权衡。
translated by 谷歌翻译
With the aim of developing a fast yet accurate algorithm for compressive sensing (CS) reconstruction of natural images, we combine in this paper the merits of two existing categories of CS methods: the structure insights of traditional optimization-based methods and the speed of recent network-based ones. Specifically, we propose a novel structured deep network, dubbed ISTA-Net, which is inspired by the Iterative Shrinkage-Thresholding Algorithm (ISTA) for optimizing a general 1 norm CS reconstruction model. To cast ISTA into deep network form, we develop an effective strategy to solve the proximal mapping associated with the sparsity-inducing regularizer using nonlinear transforms. All the parameters in ISTA-Net (e.g. nonlinear transforms, shrinkage thresholds, step sizes, etc.) are learned end-to-end, rather than being hand-crafted. Moreover, considering that the residuals of natural images are more compressible, an enhanced version of ISTA-Net in the residual domain, dubbed ISTA-Net + , is derived to further improve CS reconstruction. Extensive CS experiments demonstrate that the proposed ISTA-Nets outperform existing state-of-the-art optimization-based and networkbased CS methods by large margins, while maintaining fast computational speed. Our source codes are available: http://jianzhang.tech/projects/ISTA-Net.
translated by 谷歌翻译
光谱压缩成像(SCI)能够将高维高光谱图像编码为2D测量,然后使用算法来重建时空光谱数据处。目前,SCI的主要瓶颈是重建算法,最新的(SOTA)重建方法通常面临长期重建时间和/或细节恢复不良的问题。在本文中,我们提出了一个新型的混合网络模块,即CCOT(卷积和上下文变压器)块,该模块可以同时获得卷积的感应偏见和强大的变压器建模能力,并有助于提高重建质量以提高重建质量还原细节。我们将提出的CCOT块集成到基于广义交替投影算法的深层展开框架中,并进一步提出GAP-CCOT网络。通过大量合成和真实数据的实验,我们提出的模型可实现更高的重建质量($> $> $> $> $ 2db的PSNR在模拟基准数据集中)和比现有SOTA算法更短的运行时间。代码和模型可在https://github.com/ucaswangls/gap-ccot上公开获得。
translated by 谷歌翻译
使用单像素检测,联合优化编码和解码的端到端神经网络可以实现高精度成像和高电平语义传感。然而,对于不同的采样率,大规模网络需要重新培训,这是呈现的呈现和计算消耗。在这封信中,我们报告了一种加权优化技术,用于动态速率自适应单像素成像和感应,只需要培训网络一次可用于任何采样率的时间一次。具体地,我们在编码过程中引入一种新的加权方案,以表征不同的模式的调制效率。虽然网络以高采样速率训练,但是迭代地更新调制模式和相应的权重,这在融合时产生最佳排名编码串。在实验实施方案中,采用最高重量的最佳模式系列用于光调制,从而实现高效的成像和感测。报告的策略节省了现有动态单像素网络所需另一种低速速率网络的额外培训,这进一步加倍训练效率。验证了Mnist DataSet上的实验,通过采样率为1的网络培训,平均成像PSNR为0.1采样率达到23.50 dB,并且图像的图像分类精度达到高达95.00 \%,以0.03的采样率达到95.00 \% 97.91 \%以0.1的采样率。
translated by 谷歌翻译
Tomographic SAR technique has attracted remarkable interest for its ability of three-dimensional resolving along the elevation direction via a stack of SAR images collected from different cross-track angles. The emerged compressed sensing (CS)-based algorithms have been introduced into TomoSAR considering its super-resolution ability with limited samples. However, the conventional CS-based methods suffer from several drawbacks, including weak noise resistance, high computational complexity, and complex parameter fine-tuning. Aiming at efficient TomoSAR imaging, this paper proposes a novel efficient sparse unfolding network based on the analytic learned iterative shrinkage thresholding algorithm (ALISTA) architecture with adaptive threshold, named Adaptive Threshold ALISTA-based Sparse Imaging Network (ATASI-Net). The weight matrix in each layer of ATASI-Net is pre-computed as the solution of an off-line optimization problem, leaving only two scalar parameters to be learned from data, which significantly simplifies the training stage. In addition, adaptive threshold is introduced for each azimuth-range pixel, enabling the threshold shrinkage to be not only layer-varied but also element-wise. Moreover, the final learned thresholds can be visualized and combined with the SAR image semantics for mutual feedback. Finally, extensive experiments on simulated and real data are carried out to demonstrate the effectiveness and efficiency of the proposed method.
translated by 谷歌翻译
在许多图像处理任务中,深度学习方法的成功,最近还将深度学习方法引入了阶段检索问题。这些方法与传统的迭代优化方法不同,因为它们通常只需要一个强度测量,并且可以实时重建相位图像。但是,由于巨大的领域差异,这些方法给出的重建图像的质量仍然有很大的改进空间来满足一般应用要求。在本文中,我们设计了一种新型的深神经网络结构,名为Sisprnet,以基于单个傅立叶强度测量值进行相检索。为了有效利用测量的光谱信息,我们建议使用多层感知器(MLP)作为前端提出一个新的特征提取单元。它允许将输入强度图像的所有像素一起考虑,以探索其全局表示。 MLP的大小经过精心设计,以促进代表性特征的提取,同时减少噪音和异常值。辍学层还可以减轻训练MLP的过度拟合问题。为了促进重建图像中的全局相关性,将自我注意力的机制引入了提议的Sisprnet的上采样和重建(UR)块。这些UR块被插入残留的学习结构中,以防止由于其复杂的层结构而导致的较弱的信息流和消失的梯度问题。使用线性相关幅度和相位的仅相位图像和图像的不同测试数据集对所提出的模型进行了广泛的评估。在光学实验平台上进行了实验,以了解在实用环境中工作时不同深度学习方法的性能。
translated by 谷歌翻译
我们提出了一个基于一般学习的框架,用于解决非平滑和非凸图像重建问题。我们将正则函数建模为$ l_ {2,1} $ norm的组成,并将平滑但非convex功能映射参数化为深卷积神经网络。我们通过利用Nesterov的平滑技术和残留学习的概念来开发一种可证明的趋同的下降型算法来解决非平滑非概念最小化问题,并学习网络参数,以使算法的输出与培训数据中的参考匹配。我们的方法用途广泛,因为人们可以将各种现代网络结构用于正规化,而所得网络继承了算法的保证收敛性。我们还表明,所提出的网络是参数有效的,其性能与实践中各种图像重建问题中的最新方法相比有利。
translated by 谷歌翻译
单像素成像(SPI)是一种新型成像技术,其工作原理基于压缩感(CS)理论。在SPI中,数据是通过一系列压缩测量获得的,并重建了相应的图像。通常,重建算法(例如基础追求)依赖于图像中的稀疏性假设。但是,深度学习的最新进展发现了其在重建CS图像中的用途。尽管在模拟中显示出令人鼓舞的结果,但通常不清楚如何在实际的SPI设置中实现这种算法。在本文中,我们证明了对SPI图像的重建以及块压缩感(BCS)的重建。我们还提出了一个基于卷积神经网络的新型重建模型,该模型优于其他竞争性CS重建算法。此外,通过将BCS合并到我们的深度学习模型中,我们能够重建以上图像大小以上的任何大小的图像。此外,我们表明我们的模型能够重建从SPI设置获得的图像,同时接受自然图像进行训练,这可能与SPI图像大不相同。这为CS重建来自各个领域的图像重建的深度学习模型的可行性打开了机会。
translated by 谷歌翻译
为了更有效地解决图像压缩传感(CS)问题,我们提出了一种新颖的内容可扩展的网络,该网络称为CASNET,该网络共同实现了自适应采样率分配,精细的粒状可伸缩性和高质量的重建。我们首先采用数据驱动的显着性检测器来评估不同图像区域的重要性,并提出基于显着性的块比率汇总(BRA)策略来分配采样率。然后开发一个统一的可学习生成矩阵,以产生具有有序结构的任何CS比的采样矩阵。 CASNET配备了由显着性信息和防止伪影的多块训练方案引导的优化启发的恢复子网,CASNET与一个单个模型共同重建以各种采样率采样的图像阻止。为了加速训练收敛并改善网络鲁棒性,我们提出了一种基于SVD的初始化方案和随机转换增强(RTE)策略,在没有引入额外参数的情况下是可扩展的。所有CASNET组件都可以组合和端到端学习。我们进一步提供了四个阶段的实施,用于评估和实际部署。实验表明,CASNET大量优于其他CS网络,从而验证了其组件和策略之间的协作和相互支持。代码可在https://github.com/guaishou74851/casnet上找到。
translated by 谷歌翻译
Deep neural networks provide unprecedented performance gains in many real world problems in signal and image processing. Despite these gains, future development and practical deployment of deep networks is hindered by their blackbox nature, i.e., lack of interpretability, and by the need for very large training sets. An emerging technique called algorithm unrolling or unfolding offers promise in eliminating these issues by providing a concrete and systematic connection between iterative algorithms that are used widely in signal processing and deep neural networks. Unrolling methods were first proposed to develop fast neural network approximations for sparse coding. More recently, this direction has attracted enormous attention and is rapidly growing both in theoretic investigations and practical applications. The growing popularity of unrolled deep networks is due in part to their potential in developing efficient, high-performance and yet interpretable network architectures from reasonable size training sets. In this article, we review algorithm unrolling for signal and image processing. We extensively cover popular techniques for algorithm unrolling in various domains of signal and image processing including imaging, vision and recognition, and speech processing. By reviewing previous works, we reveal the connections between iterative algorithms and neural networks and present recent theoretical results. Finally, we provide a discussion on current limitations of unrolling and suggest possible future research directions.
translated by 谷歌翻译
Deep unfolding networks (DUNs) have proven to be a viable approach to compressive sensing (CS). In this work, we propose a DUN called low-rank CS network (LR-CSNet) for natural image CS. Real-world image patches are often well-represented by low-rank approximations. LR-CSNet exploits this property by adding a low-rank prior to the CS optimization task. We derive a corresponding iterative optimization procedure using variable splitting, which is then translated to a new DUN architecture. The architecture uses low-rank generation modules (LRGMs), which learn low-rank matrix factorizations, as well as gradient descent and proximal mappings (GDPMs), which are proposed to extract high-frequency features to refine image details. In addition, the deep features generated at each reconstruction stage in the DUN are transferred between stages to boost the performance. Our extensive experiments on three widely considered datasets demonstrate the promising performance of LR-CSNet compared to state-of-the-art methods in natural image CS.
translated by 谷歌翻译
相位检索(PR)是从其仅限强度测量中恢复复杂值信号的长期挑战,由于其在数字成像中的广泛应用,引起了很大的关注。最近,开发了基于深度学习的方法,这些方法在单发PR中取得了成功。这些方法需要单个傅立叶强度测量,而无需对测量数据施加任何其他约束。然而,由于PR问题的输入和输出域之间存在很大的差异,香草深神经网络(DNN)并没有提供良好的性能。物理信息的方法试图将傅立叶强度测量结果纳入提高重建精度的迭代方法。但是,它需要一个冗长的计算过程,并且仍然无法保证准确性。此外,其中许多方法都在模拟数据上工作,这些数据忽略了一些常见问题,例如实用光学PR系统中的饱和度和量化错误。在本文中,提出了一种新型的物理驱动的多尺度DNN结构,称为PPRNET。与其他基于深度学习的PR方法类似,PPRNET仅需要一个傅立叶强度测量。物理驱动的是,网络被指导遵循不同尺度的傅立叶强度测量,以提高重建精度。 PPRNET具有前馈结构,可以端到端训练。因此,它比传统物理驱动的PR方法更快,更准确。进行了实用光学平台上的大量模拟和实验。结果证明了拟议的PPRNET比传统的基于基于学习的PR方法的优势和实用性。
translated by 谷歌翻译