对于旨在提供家庭服务,搜索和救援,狭窄的检查和医疗援助的机器人来说,在未知,混乱的环境中进行积极的感测和计划是一个公开挑战。尽管存在许多主动感应方法,但它们通常考虑开放空间,假设已知设置,或者大多不概括为现实世界的场景。我们介绍了活跃的神经传感方法,该方法通过手持摄像头生成机器人操纵器的运动学可行视点序列,以收集重建基础环境所需的最小观测值。我们的框架积极收集视觉RGBD观测值,将它们汇总到场景表示中,并执行对象形状推断,以避免与环境的不必要的机器人相互作用。我们使用域随机化训练我们的合成数据方法,并通过SIM到实现的传递成功地执行了其成功执行,以重建狭窄,覆盖的,现实的机柜环境,这些环境杂乱无章。由于周围的障碍物和环境较低的照明条件,自然机柜场景对机器人运动和场景重建构成了重大挑战。然而,尽管设置不利,但就各种环境重建指标(包括计划速度,观点数量和整体场景覆盖)而言,我们的方法与基线相比表现出高性能。
translated by 谷歌翻译
从混乱中挑选特定对象是许多操纵任务的重要组成部分。部分观察结果通常要求机器人在尝试掌握之前收集场景的其他观点。本文提出了一个闭环的下一次最佳策划者,该计划者根据遮挡的对象零件驱动探索。通过不断从最新场景重建中预测抓地力,我们的政策可以在线决定最终确定执行或适应机器人的轨迹以进行进一步探索。我们表明,与常见的相机位置和处理固定基线失败的情况相比,我们的反应性方法会减少执行时间而不会丢失掌握成功率。视频和代码可在https://github.com/ethz-asl/active_grasp上找到。
translated by 谷歌翻译
抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
对于移动机器人而言,与铰接式对象的交互是一项具有挑战性但重要的任务。为了应对这一挑战,我们提出了一条新型的闭环控制管道,该管道将负担能力估计的操纵先验与基于采样的全身控制相结合。我们介绍了完全反映了代理的能力和体现的代理意识提供的概念,我们表明它们的表现优于其最先进的对应物,这些对应物仅以最终效果的几何形状为条件。此外,发现闭环负担推论使代理可以将任务分为多个非连续运动,并从失败和意外状态中恢复。最后,管道能够执行长途移动操作任务,即在现实世界中开放和关闭烤箱,成功率很高(开放:71%,关闭:72%)。
translated by 谷歌翻译
Generating grasp poses is a crucial component for any robot object manipulation task. In this work, we formulate the problem of grasp generation as sampling a set of grasps using a variational autoencoder and assess and refine the sampled grasps using a grasp evaluator model. Both Grasp Sampler and Grasp Refinement networks take 3D point clouds observed by a depth camera as input. We evaluate our approach in simulation and real-world robot experiments. Our approach achieves 88% success rate on various commonly used objects with diverse appearances, scales, and weights. Our model is trained purely in simulation and works in the real world without any extra steps. The video of our experiments can be found here.
translated by 谷歌翻译
如今,机器人在我们的日常生活中起着越来越重要的作用。在以人为本的环境中,机器人经常会遇到成堆的对象,包装的项目或孤立的对象。因此,机器人必须能够在各种情况下掌握和操纵不同的物体,以帮助人类进行日常任务。在本文中,我们提出了一种多视图深度学习方法,以处理以人为中心的域中抓住强大的对象。特别是,我们的方法将任意对象的点云作为输入,然后生成给定对象的拼字图。获得的视图最终用于估计每个对象的像素抓握合成。我们使用小对象抓住数据集训练模型端到端,并在模拟和现实世界数据上对其进行测试,而无需进行任何进一步的微调。为了评估所提出方法的性能,我们在三种情况下进行了广泛的实验集,包括孤立的对象,包装的项目和一堆对象。实验结果表明,我们的方法在所有仿真和现实机器人方案中都表现出色,并且能够在各种场景配置中实现新颖对象的可靠闭环抓握。
translated by 谷歌翻译
在以人为本的环境中工作的机器人需要知道场景中存在哪种物体,以及如何掌握和操纵不同情况下的各种对象,以帮助人类在日常任务中。因此,对象识别和抓握是此类机器人的两个关键功能。最先进的解决物体识别并将其抓握为两个单独的问题,同时都使用可视输入。此外,在训练阶段之后,机器人的知识是固定的。在这种情况下,如果机器人面临新的对象类别,则必须从划痕中重新培训以结合新信息而无需灾难性干扰。为了解决这个问题,我们提出了一个深入的学习架构,具有增强的存储器能力来处理开放式对象识别和同时抓握。特别地,我们的方法将物体的多视图作为输入,并共同估计像素 - 方向掌握配置以及作为输出的深度和旋转不变表示。然后通过元主动学习技术使用所获得的表示用于开放式对象识别。我们展示了我们掌握从未见过的对象的方法的能力,并在模拟和现实世界中使用非常少数的例子在现场使用很少的例子快速学习新的对象类别。
translated by 谷歌翻译
在本文中,我们探讨了机器人是否可以学会重新应用一组多样的物体以实现各种所需的掌握姿势。只要机器人的当前掌握姿势未能执行所需的操作任务,需要重新扫描。具有这种能力的赋予机器人具有在许多领域中的应用,例如制造或国内服务。然而,由于日常物体中的几何形状和状态和行动空间的高维度,这是一个具有挑战性的任务。在本文中,我们提出了一种机器人系统,用于将物体的部分点云和支持环境作为输入,输出序列和放置操作的序列来转换到所需的对象掌握姿势。关键技术包括神经稳定放置预测器,并通过利用和改变周围环境来引发基于图形的解决方案。我们介绍了一个新的和具有挑战性的合成数据集,用于学习和评估所提出的方法。我们展示了我们提出的系统与模拟器和现实世界实验的有效性。我们的项目网页上有更多视频和可视化示例。
translated by 谷歌翻译
由于温室环境中的较高变化和遮挡,机器人对番茄植物的视觉重建非常具有挑战性。 Active-Vision的范式通过推理先前获取的信息并系统地计划相机观点来收集有关植物的新信息,从而有助于克服这些挑战。但是,现有的主动视觉算法不能在有针对性的感知目标(例如叶子节点的3D重建)上表现良好,因为它们不能区分需要重建的植物零件和植物的其余部分。在本文中,我们提出了一种注意力驱动的主动视觉算法,该算法仅根据任务进行任务,仅考虑相关的植物零件。在模拟环境中评估了所提出的方法,该方法是针对番茄植物3D重建的任务,即各种关注水平,即整个植物,主茎和叶子节点。与预定义和随机方法相比,我们的方法将3D重建的准确性提高了9.7%和5.3%的整个植物的准确性,主茎的准确性为14.2%和7.9%,叶子源分别为25.9%和17.3%。前3个观点。同样,与预定义和随机方法相比,我们的方法重建了整个植物的80%和主茎,在1个较少的角度和80%的叶子节点中重建了3个较小的观点。我们还证明,尽管植物模型发生了变化,遮挡量,候选观点的数量和重建决议,但注意力驱动的NBV规划师仍有效地工作。通过在活动视觉上添加注意力机制,可以有效地重建整个植物和靶向植物部分。我们得出的结论是,有必要的注意机制对于显着提高复杂农业食品环境中的感知质量是必要的。
translated by 谷歌翻译
尽管移动操作在工业和服务机器人技术方面都重要,但仍然是一个重大挑战,因为它需要将最终效应轨迹的无缝整合与导航技能以及对长匹马的推理。现有方法难以控制大型配置空间,并导航动态和未知环境。在先前的工作中,我们建议将移动操纵任务分解为任务空间中最终效果的简化运动生成器,并将移动设备分解为训练有素的强化学习代理,以说明移动基础的运动基础,以说明运动的运动可行性。在这项工作中,我们引入了移动操作的神经导航(n $^2 $ m $^2 $),该导航将这种分解扩展到复杂的障碍环境,并使其能够解决现实世界中的广泛任务。最终的方法可以在未探索的环境中执行看不见的长马任务,同时立即对动态障碍和环境变化做出反应。同时,它提供了一种定义新的移动操作任务的简单方法。我们证明了我们提出的方法在多个运动学上多样化的移动操纵器上进行的广泛模拟和现实实验的能力。代码和视频可在http://mobile-rl.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
内部计算模型的物理体是机器人和动物的能力来规划和控制行动的基础。这些“自我模型”允许机器人考虑多种可能的未来行动的结果,而不会在物理现实中尝试。最近的完全数据驱动自建模中的进展使机器能够直接从任务 - 不可行的交互数据学习自己的前瞻性运动学。然而,前进kinema \ -tics模型只能预测形态的有限方面,例如关节和肿块的最终效果或速度的位置。一个关键的挑战是模拟整个形态和运动学,而无需先验知识的形态的哪些方面与未来的任务相关。在这里,我们建议,而不是直接建模前瞻性,更有用的自我建模形式是一个可以回答空间占用查询的形式,而是在机器人的状态下调节空间占用疑问。这种查询驱动的自模型在空间域中是连续的,内存高效,完全可分辨:运动感知。在物理实验中,我们展示了视觉自我模型是如何准确到工作空间的百分比,使机器人能够执行各种运动规划和控制任务。视觉自我建模还可以让机器人从真实世界损坏中检测,本地化和恢复,从而提高机器弹性。我们的项目网站是:https://robot-morphology.cs.columbia.edu/
translated by 谷歌翻译
休眠季节葡萄树修剪需要熟练的季节性工人,这在冬季变得越来越缺乏。随着在短期季节性招聘文化和低工资的短期季节性招聘文化和低工资的时间内,随着工人更少的葡萄藤,葡萄藤往往被修剪不一致地导致葡萄化物不平衡。除此之外,目前现有的机械方法无法选择性地修剪葡萄园和手动后续操作,通常需要进一步提高生产成本。在本文中,我们展示了崎岖,全自治机器人的设计和田间评估,用于休眠季节葡萄园的端到最终修剪。该设计的设计包括新颖的相机系统,运动冗余机械手,地面机器人和在感知系统中的新颖算法。所提出的研究原型机器人系统能够在213秒/葡萄藤中完全从两侧刺激一排藤蔓,总修枝精度为87%。与机械预灌浆试验相比,商业葡萄园中自治系统的初始现场测试显示出休眠季节修剪的显着变化。在手稿中描述了设计方法,系统组件,经验教训,未来增强以及简要的经济分析。
translated by 谷歌翻译
形状通知如何将对象掌握,无论是如何以及如何。因此,本文介绍了一种基于分割的架构,用于将用深度摄像机进行分解为多个基本形状的对象,以及用于机器人抓握的后处理管道。分段采用深度网络,称为PS-CNN,在具有6个类的原始形状和使用模拟引擎生成的合成数据上培训。每个原始形状都设计有参数化掌握家族,允许管道识别每个形状区域的多个掌握候选者。掌握是排序的排名,选择用于执行的第一个可行的。对于无任务掌握单个对象,该方法达到94.2%的成功率将其放置在顶部执行掌握方法中,与自上而下和SE(3)基础相比。涉及变量观点和杂波的其他测试展示了设置的鲁棒性。对于面向任务的掌握,PS-CNN实现了93.0%的成功率。总体而言,结果支持该假设,即在抓地管道内明确地编码形状原语应该提高掌握性能,包括无任务和任务相关的掌握预测。
translated by 谷歌翻译
我们考虑将移动机器人导航到具有视觉传感器的未知环境中的问题,在该环境中,机器人和传感器都无法访问全局定位信息,并且仅使用第一人称视图图像。虽然基于传感器网络的先前工作使用明确的映射和计划技术,并且经常得到外部定位系统的帮助,但我们提出了一种基于视觉的学习方法,该方法利用图形神经网络(GNN)来编码和传达相关的视点信息到移动机器人。在导航期间,机器人以模型为指导,我们通过模仿学习训练以近似最佳的运动原语,从而预测有效的成本(目标)。在我们的实验中,我们首先证明了具有各种传感器布局的以前看不见的环境的普遍性。仿真结果表明,通过利用传感器和机器人之间的通信,我们可以达到$ 18.1 \%$ $的成功率,同时将路径弯路的平均值降低$ 29.3 \%$,并且可变性降低了$ 48.4 \%$ $。这是在不需要全局地图,定位数据或传感器网络预校准的情况下完成的。其次,我们将模型从模拟到现实世界进行零拍传输。为此,我们训练一个“翻译器”模型,该模型在{}真实图像和模拟图像之间转换,以便可以直接在真实的机器人上使用导航策略(完全在模拟中训练),而无需其他微调。 。物理实验证明了我们在各种混乱的环境中的有效性。
translated by 谷歌翻译
我们探索一种新的方法来感知和操纵3D铰接式物体,该物体可以概括地使机器人阐明看不见的对象。我们提出了一个基于视觉的系统,该系统学会预测各种铰接物体的各个部分的潜在运动,以指导系统的下游运动计划以表达对象。为了预测对象运动,我们训练一个神经网络,以输出一个密集的向量场,代表点云中点云中点的点运动方向。然后,我们根据该向量领域部署一个分析运动计划者,以实现产生最大发音的政策。我们完全在模拟中训练视觉系统,并演示了系统在模拟和现实世界中概括的对象实例和新颖类别的能力,并将我们的政策部署在没有任何填充的锯耶机器人上。结果表明,我们的系统在模拟和现实世界实验中都达到了最先进的性能。
translated by 谷歌翻译
机器人需要在约束环境(例如架子和橱柜)中操纵物体,以帮助人类在房屋和办公室等日常设置中。这些限制因减少掌握能力而变得难以操纵,因此机器人需要使用非忽视策略来利用对象环境联系来执行操纵任务。为了应对在这种情况下规划和控制接触性富裕行为的挑战,该工作使用混合力量速度控制器(HFVC)作为技能表示和计划的技能序列,并使用学到的先决条件进行了计划。尽管HFVC自然能够实现稳健且合规的富裕行为,但合成它们的求解器传统上依赖于精确的对象模型和对物体姿势的闭环反馈,这些反馈因遮挡而在约束环境中很难获得。我们首先使用HFVC综合框架放松了HFVC对精确模型和反馈的需求,然后学习一个基于点云的前提函数,以对HFVC执行仍将成功地进行分类,尽管建模不正确。最后,我们在基于搜索的任务计划者中使用学到的前提来完成货架域中的接触式操纵任务。我们的方法达到了$ 73.2 \%$的任务成功率,表现优于基线实现的$ 51.5 \%$,而没有学习的先决条件。在模拟中训练了前提函数时,它也可以转移到现实世界中,而无需进行其他微调。
translated by 谷歌翻译
3D视觉输入的对象操纵对构建可宽大的感知和政策模型构成了许多挑战。然而,现有基准中的3D资产主要缺乏与拓扑和几何中的现实世界内复杂的3D形状的多样性。在这里,我们提出了Sapien操纵技能基准(Manishill)以在全物理模拟器中的各种物体上基准操纵技巧。 Manishill中的3D资产包括大型课堂内拓扑和几何变化。仔细选择任务以涵盖不同类型的操纵挑战。 3D Vision的最新进展也使我们认为我们应该定制基准,以便挑战旨在邀请研究3D深入学习的研究人员。为此,我们模拟了一个移动的全景摄像头,返回以自我为中心的点云或RGB-D图像。此外,我们希望Manishill是为一个对操纵研究感兴趣的广泛研究人员提供服务。除了支持从互动的政策学习,我们还支持学习 - 从演示(LFD)方法,通过提供大量的高质量演示(〜36,000个成功的轨迹,总共〜1.5米点云/ RGB-D帧)。我们提供使用3D深度学习和LFD算法的基线。我们的基准(模拟器,环境,SDK和基线)的所有代码都是开放的,并且将基于基准举办跨学科研究人员面临的挑战。
translated by 谷歌翻译
对未知环境的探索是机器人技术中的一个基本问题,也是自治系统应用中的重要组成部分。探索未知环境的一个主要挑战是,机器人必须计划每个时间步骤可用的有限信息。尽管大多数当前的方法都依靠启发式方法和假设来根据这些部分观察来规划路径,但我们提出了一种新颖的方式,通过利用3D场景完成来将深度学习整合到探索中,以获取知情,安全,可解释的探索映射和计划。我们的方法,SC-explorer,使用新型的增量融合机制和新提出的分层多层映射方法结合了场景的完成,以确保机器人的安全性和效率。我们进一步提出了一种信息性的路径计划方法,利用了我们的映射方法的功能和新颖的场景完整感知信息增益。虽然我们的方法通常适用,但我们在微型航空车辆(MAV)的用例中进行了评估。我们仅使用移动硬件彻底研究了高保真仿真实验中的每个组件,并证明我们的方法可以使环境的覆盖范围增加73%,而不是基线,而MAP准确性的降低仅最少。即使最终地图中未包含场景的完成,我们也可以证明它们可以用于指导机器人选择更多信息的路径,从而加快机器人传感器的测量值35%。我们将我们的方法作为开源。
translated by 谷歌翻译
机器人操纵计划是找到一系列机器人配置的问题,该配置涉及与场景中的对象的交互,例如掌握,放置,工具使用等来实现这种相互作用,传统方法需要手工设计的特征和对象表示,它仍然是如何以灵活有效的方式描述与任意对象的这种交互的开放问题。例如,通过3D建模的最新进步启发,例如,NERF,我们提出了一种方法来表示对象作为神经隐式功能,我们可以在其中定义和共同列车交互约束函数。所提出的像素对准表示直接从具有已知相机几何形状的相机图像推断出,当时在整个操纵管道中作为感知组件,同时能够实现连续的机器人操纵计划。
translated by 谷歌翻译