我们探索一种新的方法来感知和操纵3D铰接式物体,该物体可以概括地使机器人阐明看不见的对象。我们提出了一个基于视觉的系统,该系统学会预测各种铰接物体的各个部分的潜在运动,以指导系统的下游运动计划以表达对象。为了预测对象运动,我们训练一个神经网络,以输出一个密集的向量场,代表点云中点云中点的点运动方向。然后,我们根据该向量领域部署一个分析运动计划者,以实现产生最大发音的政策。我们完全在模拟中训练视觉系统,并演示了系统在模拟和现实世界中概括的对象实例和新颖类别的能力,并将我们的政策部署在没有任何填充的锯耶机器人上。结果表明,我们的系统在模拟和现实世界实验中都达到了最先进的性能。
translated by 谷歌翻译
对于移动机器人而言,与铰接式对象的交互是一项具有挑战性但重要的任务。为了应对这一挑战,我们提出了一条新型的闭环控制管道,该管道将负担能力估计的操纵先验与基于采样的全身控制相结合。我们介绍了完全反映了代理的能力和体现的代理意识提供的概念,我们表明它们的表现优于其最先进的对应物,这些对应物仅以最终效果的几何形状为条件。此外,发现闭环负担推论使代理可以将任务分为多个非连续运动,并从失败和意外状态中恢复。最后,管道能够执行长途移动操作任务,即在现实世界中开放和关闭烤箱,成功率很高(开放:71%,关闭:72%)。
translated by 谷歌翻译
抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
在现实世界中,教授多指的灵巧机器人在现实世界中掌握物体,这是一个充满挑战的问题,由于其高维状态和动作空间。我们提出了一个机器人学习系统,该系统可以进行少量的人类示范,并学会掌握在某些被遮挡的观察结果的情况下掌握看不见的物体姿势。我们的系统利用了一个小型运动捕获数据集,并为多指的机器人抓手生成具有多种多样且成功的轨迹的大型数据集。通过添加域随机化,我们表明我们的数据集提供了可以将其转移到策略学习者的强大抓地力轨迹。我们训练一种灵活的抓紧策略,该策略将对象的点云作为输入,并预测连续的动作以从不同初始机器人状态掌握对象。我们在模拟中评估了系统对22多伏的浮动手的有效性,并在现实世界中带有kuka手臂的23多杆Allegro机器人手。从我们的数据集中汲取的政策可以很好地概括在模拟和现实世界中的看不见的对象姿势
translated by 谷歌翻译
我们介绍了栖息地2.0(H2.0),这是一个模拟平台,用于培训交互式3D环境和复杂物理的场景中的虚拟机器人。我们为体现的AI堆栈 - 数据,仿真和基准任务做出了全面的贡献。具体来说,我们提出:(i)复制:一个由艺术家的,带注释的,可重新配置的3D公寓(匹配真实空间)与铰接对象(例如可以打开/关闭的橱柜和抽屉); (ii)H2.0:一个高性能物理学的3D模拟器,其速度超过8-GPU节点上的每秒25,000个模拟步骤(实时850x实时),代表先前工作的100倍加速;和(iii)家庭助理基准(HAB):一套辅助机器人(整理房屋,准备杂货,设置餐桌)的一套常见任务,以测试一系列移动操作功能。这些大规模的工程贡献使我们能够系统地比较长期结构化任务中的大规模加固学习(RL)和经典的感官平面操作(SPA)管道,并重点是对新对象,容器和布局的概括。 。我们发现(1)与层次结构相比,(1)平面RL政策在HAB上挣扎; (2)具有独立技能的层次结构遭受“交接问题”的困扰,(3)水疗管道比RL政策更脆。
translated by 谷歌翻译
在机器人操作中,以前未见的新物体的自主抓住是一个持续的挑战。在过去的几十年中,已经提出了许多方法来解决特定机器人手的问题。最近引入的Unigrasp框架具有推广到不同类型的机器人抓手的能力。但是,此方法不适用于具有闭环约束的抓手,并且当应用于具有MultiGRASP配置的机器人手时,具有数据范围。在本文中,我们提出了有效绘制的,这是一种独立于抓手模型规范的广义掌握合成和抓地力控制方法。有效绘制利用抓地力工作空间功能,而不是Unigrasp的抓属属性输入。这在训练过程中将记忆使用量减少了81.7%,并可以推广到更多类型的抓地力,例如具有闭环约束的抓手。通过在仿真和现实世界中进行对象抓住实验来评估有效绘制的有效性;结果表明,所提出的方法在仅考虑没有闭环约束的抓手时也胜过Unigrasp。在这些情况下,有效抓取在产生接触点的精度高9.85%,模拟中的握把成功率提高了3.10%。现实世界实验是用带有闭环约束的抓地力进行的,而Unigrasp无法处理,而有效绘制的成功率达到了83.3%。分析了该方法的抓地力故障的主要原因,突出了增强掌握性能的方法。
translated by 谷歌翻译
As the basis for prehensile manipulation, it is vital to enable robots to grasp as robustly as humans. In daily manipulation, our grasping system is prompt, accurate, flexible and continuous across spatial and temporal domains. Few existing methods cover all these properties for robot grasping. In this paper, we propose a new methodology for grasp perception to enable robots these abilities. Specifically, we develop a dense supervision strategy with real perception and analytic labels in the spatial-temporal domain. Additional awareness of objects' center-of-mass is incorporated into the learning process to help improve grasping stability. Utilization of grasp correspondence across observations enables dynamic grasp tracking. Our model, AnyGrasp, can generate accurate, full-DoF, dense and temporally-smooth grasp poses efficiently, and works robustly against large depth sensing noise. Embedded with AnyGrasp, we achieve a 93.3% success rate when clearing bins with over 300 unseen objects, which is comparable with human subjects under controlled conditions. Over 900 MPPH is reported on a single-arm system. For dynamic grasping, we demonstrate catching swimming robot fish in the water.
translated by 谷歌翻译
3D视觉输入的对象操纵对构建可宽大的感知和政策模型构成了许多挑战。然而,现有基准中的3D资产主要缺乏与拓扑和几何中的现实世界内复杂的3D形状的多样性。在这里,我们提出了Sapien操纵技能基准(Manishill)以在全物理模拟器中的各种物体上基准操纵技巧。 Manishill中的3D资产包括大型课堂内拓扑和几何变化。仔细选择任务以涵盖不同类型的操纵挑战。 3D Vision的最新进展也使我们认为我们应该定制基准,以便挑战旨在邀请研究3D深入学习的研究人员。为此,我们模拟了一个移动的全景摄像头,返回以自我为中心的点云或RGB-D图像。此外,我们希望Manishill是为一个对操纵研究感兴趣的广泛研究人员提供服务。除了支持从互动的政策学习,我们还支持学习 - 从演示(LFD)方法,通过提供大量的高质量演示(〜36,000个成功的轨迹,总共〜1.5米点云/ RGB-D帧)。我们提供使用3D深度学习和LFD算法的基线。我们的基准(模拟器,环境,SDK和基线)的所有代码都是开放的,并且将基于基准举办跨学科研究人员面临的挑战。
translated by 谷歌翻译
Reliably planning fingertip grasps for multi-fingered hands lies as a key challenge for many tasks including tool use, insertion, and dexterous in-hand manipulation. This task becomes even more difficult when the robot lacks an accurate model of the object to be grasped. Tactile sensing offers a promising approach to account for uncertainties in object shape. However, current robotic hands tend to lack full tactile coverage. As such, a problem arises of how to plan and execute grasps for multi-fingered hands such that contact is made with the area covered by the tactile sensors. To address this issue, we propose an approach to grasp planning that explicitly reasons about where the fingertips should contact the estimated object surface while maximizing the probability of grasp success. Key to our method's success is the use of visual surface estimation for initial planning to encode the contact constraint. The robot then executes this plan using a tactile-feedback controller that enables the robot to adapt to online estimates of the object's surface to correct for errors in the initial plan. Importantly, the robot never explicitly integrates object pose or surface estimates between visual and tactile sensing, instead it uses the two modalities in complementary ways. Vision guides the robots motion prior to contact; touch updates the plan when contact occurs differently than predicted from vision. We show that our method successfully synthesises and executes precision grasps for previously unseen objects using surface estimates from a single camera view. Further, our approach outperforms a state of the art multi-fingered grasp planner, while also beating several baselines we propose.
translated by 谷歌翻译
机器人需要在约束环境(例如架子和橱柜)中操纵物体,以帮助人类在房屋和办公室等日常设置中。这些限制因减少掌握能力而变得难以操纵,因此机器人需要使用非忽视策略来利用对象环境联系来执行操纵任务。为了应对在这种情况下规划和控制接触性富裕行为的挑战,该工作使用混合力量速度控制器(HFVC)作为技能表示和计划的技能序列,并使用学到的先决条件进行了计划。尽管HFVC自然能够实现稳健且合规的富裕行为,但合成它们的求解器传统上依赖于精确的对象模型和对物体姿势的闭环反馈,这些反馈因遮挡而在约束环境中很难获得。我们首先使用HFVC综合框架放松了HFVC对精确模型和反馈的需求,然后学习一个基于点云的前提函数,以对HFVC执行仍将成功地进行分类,尽管建模不正确。最后,我们在基于搜索的任务计划者中使用学到的前提来完成货架域中的接触式操纵任务。我们的方法达到了$ 73.2 \%$的任务成功率,表现优于基线实现的$ 51.5 \%$,而没有学习的先决条件。在模拟中训练了前提函数时,它也可以转移到现实世界中,而无需进行其他微调。
translated by 谷歌翻译
操纵铰接对象通常需要多个机器人臂。使多个机器人武器能够在铰接物体上协作地完成操纵任务是一项挑战性。在本文中,我们呈现$ \ textbf {v-mao} $,这是一个学习铰接物体的多臂操纵的框架。我们的框架包括一个变分生成模型,可以为每个机器人臂的物体刚性零件学习接触点分布。从与模拟环境的交互获得训练信号,该模拟环境是通过规划和用于铰接对象的对象控制的新颖制定的新颖制定。我们在定制的Mujoco仿真环境中部署了我们的框架,并证明我们的框架在六种不同的对象和两个不同的机器人上实现了高成功率。我们还表明,生成建模可以有效地学习铰接物体上的接触点分布。
translated by 谷歌翻译
在本文中,我们探讨了机器人是否可以学会重新应用一组多样的物体以实现各种所需的掌握姿势。只要机器人的当前掌握姿势未能执行所需的操作任务,需要重新扫描。具有这种能力的赋予机器人具有在许多领域中的应用,例如制造或国内服务。然而,由于日常物体中的几何形状和状态和行动空间的高维度,这是一个具有挑战性的任务。在本文中,我们提出了一种机器人系统,用于将物体的部分点云和支持环境作为输入,输出序列和放置操作的序列来转换到所需的对象掌握姿势。关键技术包括神经稳定放置预测器,并通过利用和改变周围环境来引发基于图形的解决方案。我们介绍了一个新的和具有挑战性的合成数据集,用于学习和评估所提出的方法。我们展示了我们提出的系统与模拟器和现实世界实验的有效性。我们的项目网页上有更多视频和可视化示例。
translated by 谷歌翻译
We formulate grasp learning as a neural field and present Neural Grasp Distance Fields (NGDF). Here, the input is a 6D pose of a robot end effector and output is a distance to a continuous manifold of valid grasps for an object. In contrast to current approaches that predict a set of discrete candidate grasps, the distance-based NGDF representation is easily interpreted as a cost, and minimizing this cost produces a successful grasp pose. This grasp distance cost can be incorporated directly into a trajectory optimizer for joint optimization with other costs such as trajectory smoothness and collision avoidance. During optimization, as the various costs are balanced and minimized, the grasp target is allowed to smoothly vary, as the learned grasp field is continuous. In simulation benchmarks with a Franka arm, we find that joint grasping and planning with NGDF outperforms baselines by 63% execution success while generalizing to unseen query poses and unseen object shapes. Project page: https://sites.google.com/view/neural-grasp-distance-fields.
translated by 谷歌翻译
尽管移动操作在工业和服务机器人技术方面都重要,但仍然是一个重大挑战,因为它需要将最终效应轨迹的无缝整合与导航技能以及对长匹马的推理。现有方法难以控制大型配置空间,并导航动态和未知环境。在先前的工作中,我们建议将移动操纵任务分解为任务空间中最终效果的简化运动生成器,并将移动设备分解为训练有素的强化学习代理,以说明移动基础的运动基础,以说明运动的运动可行性。在这项工作中,我们引入了移动操作的神经导航(n $^2 $ m $^2 $),该导航将这种分解扩展到复杂的障碍环境,并使其能够解决现实世界中的广泛任务。最终的方法可以在未探索的环境中执行看不见的长马任务,同时立即对动态障碍和环境变化做出反应。同时,它提供了一种定义新的移动操作任务的简单方法。我们证明了我们提出的方法在多个运动学上多样化的移动操纵器上进行的广泛模拟和现实实验的能力。代码和视频可在http://mobile-rl.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
机器人外科助理(RSAs)通常用于通过专家外科医生进行微创手术。然而,长期以来充满了乏味和重复的任务,如缝合可以导致外科医生疲劳,激励缝合的自动化。随着薄反射针的视觉跟踪极具挑战性,在未反射对比涂料的情况下修改了针。作为朝向无修改针的缝合子任务自动化的步骤,我们提出了休斯顿:切换未经修改,外科手术,工具障碍针,一个问题和算法,它使用学习的主动传感策略与立体声相机本地化并对齐针头进入另一臂的可见和可访问的姿势。为了补偿机器人定位和针头感知误差,然后算法执行使用多个摄像机的高精度抓握运动。在使用Da Vinci研究套件(DVRK)的物理实验中,休斯顿成功通过了96.7%的成功率,并且能够在故障前平均地在臂32.4倍之间顺序地执行切换。在培训中看不见的针头,休斯顿实现了75-92.9%的成功率。据我们所知,这项工作是第一个研究未修改的手术针的切换。查看https://tinyurl.com/huston-surgery用于额外​​的材料。
translated by 谷歌翻译
学习灵巧的操纵技巧是计算机图形和机器人技术的长期挑战,尤其是当任务涉及手,工具和物体之间的复杂而微妙的互动时。在本文中,我们专注于基于筷子的对象搬迁任务,这些任务很常见却又要求。成功的筷子技巧的关键是稳定地抓住棍棒,这也支持精致的演习。我们会自动发现贝叶斯优化(BO)和深钢筋学习(DRL)的身体有效的筷子姿势,它适用于多种握把的样式和手工形态,而无需示例数据。作为输入,我们要移动发现的抓紧姿势和所需的对象,我们构建了基于物理的手部控制器,以在两个阶段完成重定位任务。首先,运动轨迹是为筷子合成的,并处于运动计划阶段。我们运动策划者的关键组件包括一个握把模型,以选择用于抓住对象的合适筷子配置,以及一个轨迹优化模块,以生成无碰撞的筷子轨迹。然后,我们再次通过DRL训练基于物理的手部控制器,以跟踪运动计划者产生的所需运动轨迹。我们通过重新定位各种形状和尺寸的对象,以多种诱人的样式和多种手工形态的位置来展示框架的功能。与试图学习基于筷子的技能的香草系统相比,我们的系统实现了更快的学习速度和更好的控制鲁棒性,而无需抓紧姿势优化模块和/或没有运动学运动计划者。
translated by 谷歌翻译
We present a generalised architecture for reactive mobile manipulation while a robot's base is in motion toward the next objective in a high-level task. By performing tasks on-the-move, overall cycle time is reduced compared to methods where the base pauses during manipulation. Reactive control of the manipulator enables grasping objects with unpredictable motion while improving robustness against perception errors, environmental disturbances, and inaccurate robot control compared to open-loop, trajectory-based planning approaches. We present an example implementation of the architecture and investigate the performance on a series of pick and place tasks with both static and dynamic objects and compare the performance to baseline methods. Our method demonstrated a real-world success rate of over 99%, failing in only a single trial from 120 attempts with a physical robot system. The architecture is further demonstrated on other mobile manipulator platforms in simulation. Our approach reduces task time by up to 48%, while also improving reliability, gracefulness, and predictability compared to existing architectures for mobile manipulation. See https://benburgesslimerick.github.io/ManipulationOnTheMove for supplementary materials.
translated by 谷歌翻译
自我咬合对于布料操纵而具有挑战性,因为这使得很难估计布的全部状态。理想情况下,试图展开弄皱或折叠的布的机器人应该能够对布的遮挡区域进行推理。我们利用姿势估计的最新进展来构建一种使用明确的遮挡推理来展开皱巴布的系统的系统。具体来说,我们首先学习一个模型来重建布的网格。但是,由于布构型的复杂性以及遮挡的歧义,该模型可能会出现错误。我们的主要见解是,我们可以通过进行自我监督的损失进行测试时间填充来进一步完善预测的重建。获得的重建网格使我们能够在推理遮挡的同时使用基于网格的动力学模型来计划。我们在布料上和布料规范化上评估了系统,其目的是将布操作成典型的姿势。我们的实验表明,我们的方法显着优于未明确解释闭塞或执行测试时间优化的先验方法。可以在我们的$ \ href {https://sites.google.com/view/occlusion-reason/home/home} {\ text {project {project {project}}}上找到视频和可视化。
translated by 谷歌翻译
铰接的物体在日常生活中很丰富。发现它们的部位,关节和运动学对于机器人与这些物体相互作用至关重要。我们从Action(SFA)引入结构,该框架通过一系列推断相互作用来发现3D部分的几何形状和未看到的表达对象的关节参数。我们的主要见解是,应考虑构建3D明显的CAD模型的3D相互作用和感知,尤其是在训练过程中未见的类别的情况下。通过选择信息丰富的交互,SFA发现零件并揭示最初遮挡的表面,例如封闭抽屉的内部。通过在3D中汇总视觉观测,SFA可以准确段段多个部分,重建零件几何形状,并在规范坐标框架中渗透所有关节参数。我们的实验表明,在模拟中训练的单个SFA模型可以推广到具有未知运动结构和现实世界对象的许多看不见的对象类别。代码和数据将公开可用。
translated by 谷歌翻译
作为自治机器人的互动和导航在诸如房屋之类的真实环境中,可靠地识别和操纵铰接物体,例如门和橱柜是有用的。在对象铰接识别中许多先前的作品需要通过机器人或人类操纵物体。虽然最近的作品已经解决了从视觉观测的预测,但他们经常假设根据其运动约束的铰接部件移动的类别级运动模型或观察序列的先验知识。在这项工作中,我们提出了Formnet,是一种神经网络,该神经网络识别来自RGB-D图像和分段掩模的单帧对象部分的对象部分之间的铰接机制。从6个类别的149个铰接对象的100K合成图像培训网络培训。通过具有域随机化的光保护模拟器呈现合成图像。我们所提出的模型预测物体部件的运动残余流动,并且这些流量用于确定铰接类型和参数。该网络在训练有素的类别中的新对象实例上实现了82.5%的铰接式分类精度。实验还展示了该方法如何实现新颖类别的泛化,并且在没有微调的情况下应用于现实世界图像。
translated by 谷歌翻译