我们考虑将移动机器人导航到具有视觉传感器的未知环境中的问题,在该环境中,机器人和传感器都无法访问全局定位信息,并且仅使用第一人称视图图像。虽然基于传感器网络的先前工作使用明确的映射和计划技术,并且经常得到外部定位系统的帮助,但我们提出了一种基于视觉的学习方法,该方法利用图形神经网络(GNN)来编码和传达相关的视点信息到移动机器人。在导航期间,机器人以模型为指导,我们通过模仿学习训练以近似最佳的运动原语,从而预测有效的成本(目标)。在我们的实验中,我们首先证明了具有各种传感器布局的以前看不见的环境的普遍性。仿真结果表明,通过利用传感器和机器人之间的通信,我们可以达到$ 18.1 \%$ $的成功率,同时将路径弯路的平均值降低$ 29.3 \%$,并且可变性降低了$ 48.4 \%$ $。这是在不需要全局地图,定位数据或传感器网络预校准的情况下完成的。其次,我们将模型从模拟到现实世界进行零拍传输。为此,我们训练一个“翻译器”模型,该模型在{}真实图像和模拟图像之间转换,以便可以直接在真实的机器人上使用导航策略(完全在模拟中训练),而无需其他微调。 。物理实验证明了我们在各种混乱的环境中的有效性。
translated by 谷歌翻译
Underwater navigation presents several challenges, including unstructured unknown environments, lack of reliable localization systems (e.g., GPS), and poor visibility. Furthermore, good-quality obstacle detection sensors for underwater robots are scant and costly; and many sensors like RGB-D cameras and LiDAR only work in-air. To enable reliable mapless underwater navigation despite these challenges, we propose a low-cost end-to-end navigation system, based on a monocular camera and a fixed single-beam echo-sounder, that efficiently navigates an underwater robot to waypoints while avoiding nearby obstacles. Our proposed method is based on Proximal Policy Optimization (PPO), which takes as input current relative goal information, estimated depth images, echo-sounder readings, and previous executed actions, and outputs 3D robot actions in a normalized scale. End-to-end training was done in simulation, where we adopted domain randomization (varying underwater conditions and visibility) to learn a robust policy against noise and changes in visibility conditions. The experiments in simulation and real-world demonstrated that our proposed method is successful and resilient in navigating a low-cost underwater robot in unknown underwater environments. The implementation is made publicly available at https://github.com/dartmouthrobotics/deeprl-uw-robot-navigation.
translated by 谷歌翻译
这项工作研究了图像目标导航问题,需要通过真正拥挤的环境引导具有嘈杂传感器和控制的机器人。最近的富有成效的方法依赖于深度加强学习,并学习模拟环境中的导航政策,这些环境比真实环境更简单。直接将这些训练有素的策略转移到真正的环境可能非常具有挑战性甚至危险。我们用由四个解耦模块组成的分层导航方法来解决这个问题。第一模块在机器人导航期间维护障碍物映射。第二个将定期预测实时地图上的长期目标。第三个计划碰撞命令集以导航到长期目标,而最终模块将机器人正确靠近目标图像。四个模块是单独开发的,以适应真实拥挤的情景中的图像目标导航。此外,分层分解对导航目标规划,碰撞避免和导航结束预测的学习进行了解耦,这在导航训练期间减少了搜索空间,并有助于改善以前看不见的真实场景的概括。我们通过移动机器人评估模拟器和现实世界中的方法。结果表明,我们的方法优于多种导航基线,可以在这些方案中成功实现导航任务。
translated by 谷歌翻译
图形神经网络(GNNS)是一种范式转换的神经结构,以便于学习复杂的多智能经纪行为。最近的工作已经表现出显着的绩效,如植绒,多代理路径规划和合作覆盖。但是,通过基于GNN的学习计划导出的策略尚未部署到物理多机器人系统上的现实世界。在这项工作中,我们展示了一个系统的设计,允许完全分散地执行基于GNN的策略。我们创建基于ROS2的框架,并在本文中详细说明其细节。我们展示了我们在一个案例研究的框架,需要在机器人之间进行紧张的协调,并呈现出于依赖于adhoc通信的分散式多机器人系统的基于GNN的政策的成功实际部署的一类结果。可以在线找到这种情况的视频演示。https://www.youtube.com/watch?v=coh-wln4io4
translated by 谷歌翻译
我们介绍了一个目标驱动的导航系统,以改善室内场景中的Fapless视觉导航。我们的方法在每次步骤中都将机器人和目标的多视图观察为输入,以提供将机器人移动到目标的一系列动作,而不依赖于运行时在运行时。通过优化包含三个关键设计的组合目标来了解该系统。首先,我们建议代理人在做出行动决定之前构建下一次观察。这是通过从专家演示中学习变分生成模块来实现的。然后,我们提出预测预先预测静态碰撞,作为辅助任务,以改善导航期间的安全性。此外,为了减轻终止动作预测的训练数据不平衡问题,我们还介绍了一个目标检查模块来区分与终止动作的增强导航策略。这三种建议的设计都有助于提高培训数据效率,静态冲突避免和导航泛化性能,从而产生了一种新颖的目标驱动的FLASES导航系统。通过对Turtlebot的实验,我们提供了证据表明我们的模型可以集成到机器人系统中并在现实世界中导航。视频和型号可以在补充材料中找到。
translated by 谷歌翻译
深度强化学习在基于激光的碰撞避免有效的情况下取得了巨大的成功,因为激光器可以感觉到准确的深度信息而无需太多冗余数据,这可以在算法从模拟环境迁移到现实世界时保持算法的稳健性。但是,高成本激光设备不仅很难为大型机器人部署,而且还表现出对复杂障碍的鲁棒性,包括不规则的障碍,例如桌子,桌子,椅子和架子,以及复杂的地面和特殊材料。在本文中,我们提出了一个新型的基于单眼相机的复杂障碍避免框架。特别是,我们创新地将捕获的RGB图像转换为伪激光测量,以进行有效的深度强化学习。与在一定高度捕获的传统激光测量相比,仅包含距离附近障碍的一维距离信息,我们提议的伪激光测量融合了捕获的RGB图像的深度和语义信息,这使我们的方法有效地有效障碍。我们还设计了一个功能提取引导模块,以加重输入伪激光测量,并且代理对当前状态具有更合理的关注,这有利于提高障碍避免政策的准确性和效率。
translated by 谷歌翻译
尽管移动操作在工业和服务机器人技术方面都重要,但仍然是一个重大挑战,因为它需要将最终效应轨迹的无缝整合与导航技能以及对长匹马的推理。现有方法难以控制大型配置空间,并导航动态和未知环境。在先前的工作中,我们建议将移动操纵任务分解为任务空间中最终效果的简化运动生成器,并将移动设备分解为训练有素的强化学习代理,以说明移动基础的运动基础,以说明运动的运动可行性。在这项工作中,我们引入了移动操作的神经导航(n $^2 $ m $^2 $),该导航将这种分解扩展到复杂的障碍环境,并使其能够解决现实世界中的广泛任务。最终的方法可以在未探索的环境中执行看不见的长马任务,同时立即对动态障碍和环境变化做出反应。同时,它提供了一种定义新的移动操作任务的简单方法。我们证明了我们提出的方法在多个运动学上多样化的移动操纵器上进行的广泛模拟和现实实验的能力。代码和视频可在http://mobile-rl.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
为了基于深度加强学习(RL)来增强目标驱动的视觉导航的交叉目标和跨场景,我们将信息理论正则化术语引入RL目标。正则化最大化导航动作与代理的视觉观察变换之间的互信息,从而促进更明智的导航决策。这样,代理通过学习变分生成模型来模拟动作观察动态。基于该模型,代理生成(想象)从其当前观察和导航目标的下一次观察。这样,代理学会了解导航操作与其观察变化之间的因果关系,这允许代理通过比较当前和想象的下一个观察来预测导航的下一个动作。 AI2-Thor框架上的交叉目标和跨场景评估表明,我们的方法在某些最先进的模型上获得了平均成功率的10美元。我们进一步评估了我们的模型在两个现实世界中:来自离散的活动视觉数据集(AVD)和带有TurtleBot的连续现实世界环境中的看不见的室内场景导航。我们证明我们的导航模型能够成功实现导航任务这些情景。视频和型号可以在补充材料中找到。
translated by 谷歌翻译
移动机器人的视觉导航经典通过SLAM加上最佳规划,最近通过实现作为深网络的端到端培训。虽然前者通常仅限于航点计划,但即使在真实的物理环境中已经证明了它们的效率,后一种解决方案最常用于模拟中,但已被证明能够学习更复杂的视觉推理,涉及复杂的语义规则。通过实际机器人在物理环境中导航仍然是一个开放问题。端到端的培训方法仅在模拟中进行了彻底测试,实验涉及实际机器人的实际机器人在简化的实验室条件下限制为罕见的性能评估。在这项工作中,我们对真实物理代理的性能和推理能力进行了深入研究,在模拟中培训并部署到两个不同的物理环境。除了基准测试之外,我们提供了对不同条件下不同代理商培训的泛化能力的见解。我们可视化传感器使用以及不同类型信号的重要性。我们展示了,对于Pointgoal Task,一个代理在各种任务上进行预先培训,并在目标环境的模拟版本上进行微调,可以达到竞争性能,而无需建模任何SIM2重传,即通过直接从仿真部署培训的代理即可一个真正的物理机器人。
translated by 谷歌翻译
We present a retrospective on the state of Embodied AI research. Our analysis focuses on 13 challenges presented at the Embodied AI Workshop at CVPR. These challenges are grouped into three themes: (1) visual navigation, (2) rearrangement, and (3) embodied vision-and-language. We discuss the dominant datasets within each theme, evaluation metrics for the challenges, and the performance of state-of-the-art models. We highlight commonalities between top approaches to the challenges and identify potential future directions for Embodied AI research.
translated by 谷歌翻译
操纵任务,如装载洗碗机,可以被视为不同对象之间的空间约束和关系序列。我们的目标是通过将操纵作为图表构成操作来发现这些规则,其节点代表了对象和目标等任务相关实体,并呈现了从示范中解决此问题的图形神经网络(GNN)策略架构。在我们的实验中,使用20个专家演示的模仿学习(IL)培训的单个GNN策略可以解决块根,重排和洗碗机加载任务;一旦策略了解了空间结构,它就可以概括到更大数量的对象,目标配置,以及从模拟到现实世界。这些实验表明,图形IL可以解决复杂的长地平衡操作问题而不需要详细的任务描述。视频可以找到:https://youtu.be/poxatdaj7ay。
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
对于旨在提供家庭服务,搜索和救援,狭窄的检查和医疗援助的机器人来说,在未知,混乱的环境中进行积极的感测和计划是一个公开挑战。尽管存在许多主动感应方法,但它们通常考虑开放空间,假设已知设置,或者大多不概括为现实世界的场景。我们介绍了活跃的神经传感方法,该方法通过手持摄像头生成机器人操纵器的运动学可行视点序列,以收集重建基础环境所需的最小观测值。我们的框架积极收集视觉RGBD观测值,将它们汇总到场景表示中,并执行对象形状推断,以避免与环境的不必要的机器人相互作用。我们使用域随机化训练我们的合成数据方法,并通过SIM到实现的传递成功地执行了其成功执行,以重建狭窄,覆盖的,现实的机柜环境,这些环境杂乱无章。由于周围的障碍物和环境较低的照明条件,自然机柜场景对机器人运动和场景重建构成了重大挑战。然而,尽管设置不利,但就各种环境重建指标(包括计划速度,观点数量和整体场景覆盖)而言,我们的方法与基线相比表现出高性能。
translated by 谷歌翻译
在本文中,我们使用基于视觉的图形聚合和推理(VGAI)呈现了一种感知 - 动作通信环路设计。这种多代理分散的学习 - 控制框架将原始的视觉观测映射到代理操作,并通过相邻代理之间的本地通信提供帮助。我们的框架是由圆形卷积和图形神经网络(CNN / GNN)的级联实现,寻址代理级视觉感知和特征学习,以及群级通信,本地信息聚合和代理动作推断。通过联合训练CNN和GNN,结合了解图像特征和通信消息以更好地解决特定任务。我们使用模仿学习在离线阶段训练VGAI控制器,依赖于集中式专家控制器。这导致学习的VGAI控制器可以以分布式方式部署以进行在线执行。此外,控制器展示了良好的缩放性质,在较大的团队中具有较小的团队和应用程序的培训。通过多代理植入应用程序,我们证明VGAI产生与其他分散的控制器相当或更好地使用视觉输入模态,而不访问精确的位置或运动状态信息。
translated by 谷歌翻译
我们展示了通过大规模多代理端到端增强学习的大射击可转移到真正的四轮压力机的无人驾驶群体控制器的可能性。我们培训由神经网络参数化的政策,该政策能够以完全分散的方式控制群体中的各个无人机。我们的政策,在具有现实的四轮流物理学的模拟环境中训练,展示了先进的植绒行为,在紧张的地层中执行侵略性的操作,同时避免彼此的碰撞,破裂和重新建立地层,以避免与移动障碍的碰撞,并有效地协调追求障碍,并有效地协调追求逃避任务。在模拟中,我们分析了培训制度的不同模型架构和参数影响神经群的最终表现。我们展示了在模拟中学习的模型的成功部署到高度资源受限的物理四体体执行站保持和目标交换行为。在Propers网站上提供代码和视频演示,在https://sites.google.com/view/swarm-rl上获得。
translated by 谷歌翻译
模块化机器人可以在每天重新排列到新设计中,通过为每项新任务形成定制机器人来处理各种各样的任务。但是,重新配置的机制是不够的:每个设计还需要自己独特的控制策略。人们可以从头开始为每个新设计制作一个政策,但这种方法不可扩展,特别是给出了甚至一小组模块可以生成的大量设计。相反,我们创建了一个模块化策略框架,策略结构在硬件排列上有调节,并仅使用一个培训过程来创建控制各种设计的策略。我们的方法利用了模块化机器人的运动学可以表示为设计图,其中节点作为模块和边缘作为它们之间的连接。给定机器人,它的设计图用于创建具有相同结构的策略图,其中每个节点包含一个深神经网络,以及通过共享参数的相同类型共享知识的模块(例如,Hexapod上的所有腿都相同网络参数)。我们开发了一种基于模型的强化学习算法,交织模型学习和轨迹优化,以培训策略。我们展示了模块化政策推广到培训期间没有看到的大量设计,没有任何额外的学习。最后,我们展示了与模拟和真实机器人一起控制各种设计的政策。
translated by 谷歌翻译
如果我们想在将它们部署在现实中之前在模拟中训练机器人,那么假定减少SIM2REAL差距的人似乎很自然,并且几乎是不言而喻的,涉及创建富裕性的模拟器(因为现实就是事实)。我们挑战了这一假设并提出了相反的假设-SIM2REAL转移机器人可以通过较低(不是更高)的保真度模拟来改善。我们使用3种不同的机器人(A1,Aliengo,Spot)对这一假设进行了系统的大规模评估 - 在现实世界中以及2个不同的模拟器(栖息地和Igibson)。我们的结果表明,与期望相反,增加忠诚无助于学习。由于模拟速度缓慢(防止大规模学习)和对模拟物理学不准确的过度拟合,因此性能较差。取而代之的是,使用现实世界数据构建机器人运动的简单模型可以改善学习和概括。
translated by 谷歌翻译
分散的多机器人目标跟踪的问题要求共同选择动作,例如运动原语,以使机器人通过本地通信最大化目标跟踪性能。实施实施的一个主要挑战是使目标跟踪方法可扩展到大规模的问题实例。在这项工作中,我们提出了通用学习体系结构,以通过分散的通信进行大规模的协作目标跟踪。特别是,我们的学习体系结构利用图形神经网络(GNN)捕获机器人的本地互动,并学习机器人的分散决策。我们通过模仿专家解决方案来训练学习模型,并实施仅涉及本地观察和沟通的分散行动选择的最终模型。我们在使用大型机器人网络的主动目标跟踪方案中演示了基于GNN的学习方法的性能。仿真结果表明,我们的方法几乎与专家算法的跟踪性能相匹配,但最多可以使用多达100个机器人运行多个订单。此外,它的表现略高于分散的贪婪算法,但运行速度更快(尤其是20多个机器人)。结果还显示了我们在以前看不见的情况下的方法的概括能力,例如,较大的环境和较大的机器人网络。
translated by 谷歌翻译
本文介绍了Cerberus机器人系统系统,该系统赢得了DARPA Subterranean挑战最终活动。出席机器人自主权。由于其几何复杂性,降解的感知条件以及缺乏GPS支持,严峻的导航条件和拒绝通信,地下设置使自动操作变得特别要求。为了应对这一挑战,我们开发了Cerberus系统,该系统利用了腿部和飞行机器人的协同作用,再加上可靠的控制,尤其是为了克服危险的地形,多模式和多机器人感知,以在传感器退化,以及在传感器退化的条件下进行映射以及映射通过统一的探索路径计划和本地运动计划,反映机器人特定限制的弹性自主权。 Cerberus基于其探索各种地下环境及其高级指挥和控制的能力,表现出有效的探索,对感兴趣的对象的可靠检测以及准确的映射。在本文中,我们报告了DARPA地下挑战赛的初步奔跑和最终奖项的结果,并讨论了为社区带来利益的教训所面临的亮点和挑战。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译