Generating grasp poses is a crucial component for any robot object manipulation task. In this work, we formulate the problem of grasp generation as sampling a set of grasps using a variational autoencoder and assess and refine the sampled grasps using a grasp evaluator model. Both Grasp Sampler and Grasp Refinement networks take 3D point clouds observed by a depth camera as input. We evaluate our approach in simulation and real-world robot experiments. Our approach achieves 88% success rate on various commonly used objects with diverse appearances, scales, and weights. Our model is trained purely in simulation and works in the real world without any extra steps. The video of our experiments can be found here.
translated by 谷歌翻译
抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
掌握姿势估计是机器人与现实世界互动的重要问题。但是,大多数现有方法需要事先可用的精确3D对象模型或大量的培训注释。为了避免这些问题,我们提出了transrasp,一种类别级别的rasp姿势估计方法,该方法通过仅标记一个对象实例来预测一类对象的掌握姿势。具体而言,我们根据其形状对应关系进行掌握姿势转移,并提出一个掌握姿势细化模块,以进一步微调抓地力姿势,以确保成功的掌握。实验证明了我们方法对通过转移的抓握姿势实现高质量抓地力的有效性。我们的代码可在https://github.com/yanjh97/transgrasp上找到。
translated by 谷歌翻译
Grasp learning has become an exciting and important topic in robotics. Just a few years ago, the problem of grasping novel objects from unstructured piles of clutter was considered a serious research challenge. Now, it is a capability that is quickly becoming incorporated into industrial supply chain automation. How did that happen? What is the current state of the art in robotic grasp learning, what are the different methodological approaches, and what machine learning models are used? This review attempts to give an overview of the current state of the art of grasp learning research.
translated by 谷歌翻译
从点云输入中的6-DOF GRASP学习中取得了巨大的成功,但是由于点集无秩序而引起的计算成本仍然是一个令人关注的问题。另外,我们从本文中的RGB-D输入中探讨了GRASP的生成。提出的解决方案Kepoint-GraspNet检测图像空间中Gripper Kepoint的投影,然后用PNP算法恢复SE(3)姿势。建立了基于原始形状和抓住家族的合成数据集来检查我们的想法。基于公制的评估表明,我们的方法在掌握建议的准确性,多样性和时间成本方面优于基准。最后,机器人实验显示出很高的成功率,证明了在现实世界应用中的想法的潜力。
translated by 谷歌翻译
Being able to grasp objects is a fundamental component of most robotic manipulation systems. In this paper, we present a new approach to simultaneously reconstruct a mesh and a dense grasp quality map of an object from a depth image. At the core of our approach is a novel camera-centric object representation called the "object shell" which is composed of an observed "entry image" and a predicted "exit image". We present an image-to-image residual ConvNet architecture in which the object shell and a grasp-quality map are predicted as separate output channels. The main advantage of the shell representation and the corresponding neural network architecture, ShellGrasp-Net, is that the input-output pixel correspondences in the shell representation are explicitly represented in the architecture. We show that this coupling yields superior generalization capabilities for object reconstruction and accurate grasp quality estimation implicitly considering the object geometry. Our approach yields an efficient dense grasp quality map and an object geometry estimate in a single forward pass. Both of these outputs can be used in a wide range of robotic manipulation applications. With rigorous experimental validation, both in simulation and on a real setup, we show that our shell-based method can be used to generate precise grasps and the associated grasp quality with over 90% accuracy. Diverse grasps computed on shell reconstructions allow the robot to select and execute grasps in cluttered scenes with more than 93% success rate.
translated by 谷歌翻译
As the basis for prehensile manipulation, it is vital to enable robots to grasp as robustly as humans. In daily manipulation, our grasping system is prompt, accurate, flexible and continuous across spatial and temporal domains. Few existing methods cover all these properties for robot grasping. In this paper, we propose a new methodology for grasp perception to enable robots these abilities. Specifically, we develop a dense supervision strategy with real perception and analytic labels in the spatial-temporal domain. Additional awareness of objects' center-of-mass is incorporated into the learning process to help improve grasping stability. Utilization of grasp correspondence across observations enables dynamic grasp tracking. Our model, AnyGrasp, can generate accurate, full-DoF, dense and temporally-smooth grasp poses efficiently, and works robustly against large depth sensing noise. Embedded with AnyGrasp, we achieve a 93.3% success rate when clearing bins with over 300 unseen objects, which is comparable with human subjects under controlled conditions. Over 900 MPPH is reported on a single-arm system. For dynamic grasping, we demonstrate catching swimming robot fish in the water.
translated by 谷歌翻译
我们提出了GRASP提案网络(GP-NET),这是一种卷积神经网络模型,可以为移动操纵器生成6-DOF GRASP。为了训练GP-NET,我们合成生成一个包含深度图像和地面真相掌握信息的数据集,以供超过1400个对象。在现实世界实验中,我们使用egad!掌握基准测试,以评估两种常用算法的GP-NET,即体积抓地力网络(VGN)和在PAL TIAGO移动操纵器上进行的GRASP抓取网络(VGN)和GRASP姿势检测包(GPD)。GP-NET的掌握率为82.2%,而VGN为57.8%,GPD的成功率为63.3%。与机器人握把中最新的方法相反,GP-NET可以在不限制工作空间的情况下使用移动操纵器抓住对象,用于抓住对象,需要桌子进行分割或需要高端GPU。为了鼓励使用GP-NET,我们在https://aucoroboticsmu.github.io/gp-net/上提供ROS包以及我们的代码和预培训模型。
translated by 谷歌翻译
如今,机器人在我们的日常生活中起着越来越重要的作用。在以人为本的环境中,机器人经常会遇到成堆的对象,包装的项目或孤立的对象。因此,机器人必须能够在各种情况下掌握和操纵不同的物体,以帮助人类进行日常任务。在本文中,我们提出了一种多视图深度学习方法,以处理以人为中心的域中抓住强大的对象。特别是,我们的方法将任意对象的点云作为输入,然后生成给定对象的拼字图。获得的视图最终用于估计每个对象的像素抓握合成。我们使用小对象抓住数据集训练模型端到端,并在模拟和现实世界数据上对其进行测试,而无需进行任何进一步的微调。为了评估所提出方法的性能,我们在三种情况下进行了广泛的实验集,包括孤立的对象,包装的项目和一堆对象。实验结果表明,我们的方法在所有仿真和现实机器人方案中都表现出色,并且能够在各种场景配置中实现新颖对象的可靠闭环抓握。
translated by 谷歌翻译
在本文中,我们探讨了机器人是否可以学会重新应用一组多样的物体以实现各种所需的掌握姿势。只要机器人的当前掌握姿势未能执行所需的操作任务,需要重新扫描。具有这种能力的赋予机器人具有在许多领域中的应用,例如制造或国内服务。然而,由于日常物体中的几何形状和状态和行动空间的高维度,这是一个具有挑战性的任务。在本文中,我们提出了一种机器人系统,用于将物体的部分点云和支持环境作为输入,输出序列和放置操作的序列来转换到所需的对象掌握姿势。关键技术包括神经稳定放置预测器,并通过利用和改变周围环境来引发基于图形的解决方案。我们介绍了一个新的和具有挑战性的合成数据集,用于学习和评估所提出的方法。我们展示了我们提出的系统与模拟器和现实世界实验的有效性。我们的项目网页上有更多视频和可视化示例。
translated by 谷歌翻译
操纵铰接对象通常需要多个机器人臂。使多个机器人武器能够在铰接物体上协作地完成操纵任务是一项挑战性。在本文中,我们呈现$ \ textbf {v-mao} $,这是一个学习铰接物体的多臂操纵的框架。我们的框架包括一个变分生成模型,可以为每个机器人臂的物体刚性零件学习接触点分布。从与模拟环境的交互获得训练信号,该模拟环境是通过规划和用于铰接对象的对象控制的新颖制定的新颖制定。我们在定制的Mujoco仿真环境中部署了我们的框架,并证明我们的框架在六种不同的对象和两个不同的机器人上实现了高成功率。我们还表明,生成建模可以有效地学习铰接物体上的接触点分布。
translated by 谷歌翻译
为了充分利用多指灵敏机器人手的多功能性进行对象抓握,必须满足手动对象相互作用和对象几何在GRASP计划期间引入的复杂物理约束。我们提出了一种组合生成模型和双重优化的综合方法,以计算新颖看不见的对象的多样化掌握。首先,从仅在六个YCB对象上训练的条件变异自动编码器获得了掌握预测。然后,通过共同求解碰撞感知的逆运动学,力闭合和摩擦约束作为一种非凸双弯曲曲线优化,将预测投射到运动学和动态可行的grasps的歧管上。我们通过成功抓住各种看不见的家庭物体,包括对其他类型的机器人抓手的挑战,来证明我们方法对硬件的有效性。我们的结果的视频摘要可在https://youtu.be/9dtrimbn99i上获得。
translated by 谷歌翻译
Reliably planning fingertip grasps for multi-fingered hands lies as a key challenge for many tasks including tool use, insertion, and dexterous in-hand manipulation. This task becomes even more difficult when the robot lacks an accurate model of the object to be grasped. Tactile sensing offers a promising approach to account for uncertainties in object shape. However, current robotic hands tend to lack full tactile coverage. As such, a problem arises of how to plan and execute grasps for multi-fingered hands such that contact is made with the area covered by the tactile sensors. To address this issue, we propose an approach to grasp planning that explicitly reasons about where the fingertips should contact the estimated object surface while maximizing the probability of grasp success. Key to our method's success is the use of visual surface estimation for initial planning to encode the contact constraint. The robot then executes this plan using a tactile-feedback controller that enables the robot to adapt to online estimates of the object's surface to correct for errors in the initial plan. Importantly, the robot never explicitly integrates object pose or surface estimates between visual and tactile sensing, instead it uses the two modalities in complementary ways. Vision guides the robots motion prior to contact; touch updates the plan when contact occurs differently than predicted from vision. We show that our method successfully synthesises and executes precision grasps for previously unseen objects using surface estimates from a single camera view. Further, our approach outperforms a state of the art multi-fingered grasp planner, while also beating several baselines we propose.
translated by 谷歌翻译
我们引入了来自多个机器人手的对象的神经隐式表示。多个机器人手之间的不同抓地力被编码为共享的潜在空间。学会了每个潜在矢量以两个3D形状的签名距离函数来解码对象的3D形状和机器人手的3D形状。此外,学会了潜在空间中的距离度量,以保留不同机器人手之间的graSps之间的相似性,其中根据机器人手的接触区域定义了grasps的相似性。该属性使我们能够在包括人手在内的不同抓地力之间转移抓地力,并且GRASP转移有可能在机器人之间分享抓地力,并使机器人能够从人类那里学习掌握技能。此外,我们隐式表示中对象和grasps的编码符号距离函数可用于6D对象姿势估计,并从部分点云中掌握触点优化,这可以在现实世界中启用机器人抓握。
translated by 谷歌翻译
成功掌握对象的能力在机器人中是至关重要的,因为它可以实现多个交互式下游应用程序。为此,大多数方法要么计算兴趣对象的完整6D姿势,要么学习预测一组掌握点。虽然前一种方法对多个对象实例或类没有很好地扩展,但后者需要大的注释数据集,并且受到新几何形状的普遍性能力差的阻碍。为了克服这些缺点,我们建议教授一个机器人如何用简单而简短的人类示范掌握一个物体。因此,我们的方法既不需要许多注释图像,也不限于特定的几何形状。我们首先介绍了一个小型RGB-D图像,显示人对象交互。然后利用该序列来构建表示所描绘的交互的相关手和对象网格。随后,我们完成重建对象形状的缺失部分,并估计了场景中的重建和可见对象之间的相对变换。最后,我们从物体和人手之间的相对姿势转移a-prioriz知识,随着当前对象在场景中的估计到机器人的必要抓握指令。与丰田的人类支持机器人(HSR)在真实和合成环境中的详尽评估证明了我们所提出的方法的适用性及其优势与以前的方法相比。
translated by 谷歌翻译
在现实世界中,教授多指的灵巧机器人在现实世界中掌握物体,这是一个充满挑战的问题,由于其高维状态和动作空间。我们提出了一个机器人学习系统,该系统可以进行少量的人类示范,并学会掌握在某些被遮挡的观察结果的情况下掌握看不见的物体姿势。我们的系统利用了一个小型运动捕获数据集,并为多指的机器人抓手生成具有多种多样且成功的轨迹的大型数据集。通过添加域随机化,我们表明我们的数据集提供了可以将其转移到策略学习者的强大抓地力轨迹。我们训练一种灵活的抓紧策略,该策略将对象的点云作为输入,并预测连续的动作以从不同初始机器人状态掌握对象。我们在模拟中评估了系统对22多伏的浮动手的有效性,并在现实世界中带有kuka手臂的23多杆Allegro机器人手。从我们的数据集中汲取的政策可以很好地概括在模拟和现实世界中的看不见的对象姿势
translated by 谷歌翻译
深度学习已被广​​泛用于推断强大的掌握。虽然最初用于学习掌握配置的人类标记的RGB-D数据集,但是这种大型数据集的准备是昂贵的。为了解决这个问题,通过物理模拟器生成图像,并且使用物理启发模型(例如,抽吸真空杯和物体之间的接触型号)作为掌握质量评估度量来注释合成图像。然而,这种联系方式复杂,需要通过实验进行参数识别,以确保真实的世界表现。此外,以前的研究还没有考虑机器人可达性,例如当具有高抓握质量的掌握配置由于机器人的碰撞或物理限制而无法到达目标时无法到达目标。在这项研究中,我们提出了一种直观的几何分析掌握质量评估度量。我们进一步纳入了可达性评估度量。我们通过拟议的评估度量对模拟器中的合成图像上的综合评估标准进行注释,以培训称为抽吸贪污U-Net ++(SG-U-Net ++)的自动编码器解码器。实验结果表明,我们直观的掌握质量评估度量与物理启发度量有竞争力。学习可达性有助于通过消除明显无法访问的候选者来减少运动规划计算时间。该系统实现了560pph(每小时碎片)的整体拾取速度。
translated by 谷歌翻译
在本文中,我们提出了一条基于截短的签名距离函数(TSDF)体积的接触点检测的新型抓紧管道,以实现闭环7度自由度(7-DOF)在杂物环境上抓住。我们方法的关键方面是1)提议的管道以多视图融合,接触点采样和评估以及碰撞检查,可提供可靠且无碰撞的7-DOF抓手姿势,并带有真实的碰撞 - 时间性能;2)基于接触的姿势表示有效地消除了基于正常方法的歧义,从而提供了更精确和灵活的解决方案。广泛的模拟和实体机器人实验表明,在模拟和物理场景中,就掌握成功率而言,提出的管道可以选择更多的反物和稳定的抓握姿势,并优于基于正常的基线。
translated by 谷歌翻译
We formulate grasp learning as a neural field and present Neural Grasp Distance Fields (NGDF). Here, the input is a 6D pose of a robot end effector and output is a distance to a continuous manifold of valid grasps for an object. In contrast to current approaches that predict a set of discrete candidate grasps, the distance-based NGDF representation is easily interpreted as a cost, and minimizing this cost produces a successful grasp pose. This grasp distance cost can be incorporated directly into a trajectory optimizer for joint optimization with other costs such as trajectory smoothness and collision avoidance. During optimization, as the various costs are balanced and minimized, the grasp target is allowed to smoothly vary, as the learned grasp field is continuous. In simulation benchmarks with a Franka arm, we find that joint grasping and planning with NGDF outperforms baselines by 63% execution success while generalizing to unseen query poses and unseen object shapes. Project page: https://sites.google.com/view/neural-grasp-distance-fields.
translated by 谷歌翻译
当代掌握检测方法采用深度学习,实现传感器和物体模型不确定性的鲁棒性。这两个主导的方法设计了掌握质量评分或基于锚的掌握识别网络。本文通过将其视为图像空间中的关键点检测来掌握掌握检测的不同方法。深网络检测每个掌握候选者作为一对关键点,可转换为掌握代表= {x,y,w,{\ theta}} t,而不是转角点的三态或四重奏。通过将关键点分组成对来降低检测难度提高性能。为了促进捕获关键点之间的依赖关系,将非本地模块结合到网络设计中。基于离散和连续定向预测的最终过滤策略消除了错误的对应关系,并进一步提高了掌握检测性能。此处提出的方法GKNET在康奈尔和伸缩的提花数据集上的精度和速度之间实现了良好的平衡(在41.67和23.26 fps的96.9%和98.39%)之间。操纵器上的后续实验使用4种类型的抓取实验来评估GKNet,反映不同滋扰的速度:静态抓握,动态抓握,在各种相机角度抓住,夹住。 GKNet优于静态和动态掌握实验中的参考基线,同时表现出变化的相机观点和中度杂波的稳健性。结果证实了掌握关键点是深度掌握网络的有效输出表示的假设,为预期的滋扰因素提供鲁棒性。
translated by 谷歌翻译