通过强化学习学习面向任务的对话策略通常需要与用户进行大量互动,实际上,这种方法对于现实世界应用程序无法使用。为了减少数据要求,我们建议从不同的对话框域中利用数据,从而减少每个给定域所需的数据量。特别是,我们建议学习域 - 不足的动作嵌入,该嵌入范围捕获通用结构,该结构为当前的对话框上下文提供了为系统提供信息,然后专门针对特定的域。我们展示了这种方法如何能够与用户的互动相互作用明显较少,而学习所需的对话数量减少了35%,并且比培训一组模拟的每个域的单独策略要比培训单独的策略更高的水平。域。
translated by 谷歌翻译
对话策略学习是面向任务的对话系统(TDS)中的关键组成部分,该系统决定在每个回合处给定对话状态的系统的下一个动作。加强学习(RL)通常被选为学习对话策略,将用户作为环境和系统作为代理。已经创建了许多基准数据集和算法,以促进基于RL的对话策略的制定和评估。在本文中,我们调查了RL规定的对话政策的最新进展和挑战。更具体地说,我们确定了主要问题,并总结了基于RL的对话政策学习的相应解决方案。此外,我们通过将最新方法分类为RL中的基本元素,对将RL应用于对话政策学习的全面调查。我们认为,这项调查可以阐明对话管理未来的研究。
translated by 谷歌翻译
The reinforcement learning paradigm is a popular way to address problems that have only limited environmental feedback, rather than correctly labeled examples, as is common in other machine learning contexts. While significant progress has been made to improve learning in a single task, the idea of transfer learning has only recently been applied to reinforcement learning tasks. The core idea of transfer is that experience gained in learning to perform one task can help improve learning performance in a related, but different, task. In this article we present a framework that classifies transfer learning methods in terms of their capabilities and goals, and then use it to survey the existing literature, as well as to suggest future directions for transfer learning work.
translated by 谷歌翻译
人类通常通过将它们分解为更容易的子问题,然后结合子问题解决方案来解决复杂的问题。这种类型的组成推理允许在解决共享一部分基础构图结构的未来任务时重复使用子问题解决方案。在持续或终身的强化学习(RL)设置中,将知识分解为可重复使用的组件的能力将使代理通过利用积累的组成结构来快速学习新的RL任务。我们基于神经模块探索一种特定形式的组成形式,并提出了一组RL问题,可以直观地接受组成溶液。从经验上讲,我们证明了神经组成确实捕获了问题空间的基本结构。我们进一步提出了一种构图终身RL方法,该方法利用累积的神经成分来加速学习未来任务的学习,同时通过离线RL通过离线RL保留以前的RL,而不是重播经验。
translated by 谷歌翻译
在口头对话系统中,我们的目标是部署人工智能,以建立可以与人类交流的自动化对话剂。对话系统越来越多地旨在超越仅仅模仿对话,而且随着时间的推移,这些交互也会改善。在本次调查中,我们概述了多年来制定对话系统的方法的广泛概述。对话系统的不同用例范围从基于任务的系统到开放域聊天动机和需要特定的系统。从简单的规则的系统开始,研究已经朝着越来越复杂的建筑培训,这些建筑在大规模的数据集语料库中培训,如深度学习系统。激进了类似人类对话的直觉,通过加强学习将情绪纳入自然语言发生器的进展。虽然我们看到对某些指标的高度边际改善的趋势,但我们发现指标存在有限的理由,评估实践并不统一。要得出结论,我们标志着这些问题并突出了可能的研究方向。
translated by 谷歌翻译
我们开发了一种新的持续元学习方法,以解决连续多任务学习中的挑战。在此设置中,代理商的目标是快速通过任何任务序列实现高奖励。先前的Meta-Creenifiltive学习算法已经表现出有希望加速收购新任务的结果。但是,他们需要在培训期间访问所有任务。除了简单地将过去的经验转移到新任务,我们的目标是设计学习学习的持续加强学习算法,使用他们以前任务的经验更快地学习新任务。我们介绍了一种新的方法,连续的元策略搜索(Comps),通过以增量方式,在序列中的每个任务上,通过序列的每个任务来消除此限制,而无需重新访问先前的任务。 Comps持续重复两个子程序:使用RL学习新任务,并使用RL的经验完全离线Meta学习,为后续任务学习做好准备。我们发现,在若干挑战性连续控制任务的旧序列上,Comps优于持续的持续学习和非政策元增强方法。
translated by 谷歌翻译
以任务为导向的对话系统(TDSS)主要在离线设置或人类评估中评估。评估通常仅限于单转或非常耗时。作为替代方案,模拟用户行为的用户模拟器使我们能够考虑一组广泛的用户目标,以生成类似人类的对话以进行模拟评估。使用现有的用户模拟器来评估TDSS是具有挑战性的,因为用户模拟器主要旨在优化TDSS的对话策略,并且评估功能有限。此外,对用户模拟器的评估是一个开放的挑战。在这项工作中,我们提出了一个用于端到端TDS评估的隐喻用户模拟器,如果它在与系统的交互中模拟用户的类似思维,则定义模拟器是隐喻的。我们还提出了一个基于测试人员的评估框架,以生成变体,即具有不同功能的对话系统。我们的用户模拟器构建了一个隐喻的用户模型,该模型通过参考遇到新项目时的先验知识来帮助模拟器进行推理。我们通过检查模拟器与变体之间的模拟相互作用来估计模拟器的质量。我们的实验是使用三个TDS数据集进行的。与基于议程的模拟器和三个数据集上的SEQ2SEQ模型相比,隐喻用户模拟器与手动评估的一致性更好。我们的测试人员框架展示了效率,并且可以更好地概括和可扩展性,因为它可以适用于多个域中的对话和多个任务,例如对话建议和电子商务对话。
translated by 谷歌翻译
面向任务的对话系统旨在通过自然语言互动实现用户目标。他们可以与人类用户一起评估它们,但是在开发阶段的每个迭代中都无法实现。模拟用户可能是替代方案,但是他们的开发是不平凡的。因此,研究人员诉诸于现有的人类语料库的离线指标,这些指标更实用且易于再现。不幸的是,它们在反映对话系统的真实性能方面受到限制。例如,BLEU与人类判断力的相关性很差,现有的基于语料库的指标(例如成功率忽略对话环境不匹配)。对于具有良好概括且与人类判断密切相关的任务导向系统,仍然需要一个可靠的指标。在本文中,我们建议使用离线增强学习来基于静态语料库的对话评估。这样的评估者通常称为评论家,并用于政策优化。我们迈出了一步,并表明可以在任何对话系统的静态语料库上对离线RL批评家作为外部评估者进行培训,从而可以在各种类型的系统上进行对话性能比较。这种方法的好处是与人类判断达到密切的相关性,使其成为与模型无关的,我们通过交互式用户试验确认。
translated by 谷歌翻译
用户模拟器(USS)通常用于通过增强学习训练面向任务的对话系统(DSS)。相互作用通常是在语义层面上以提高效率的,但是从语义动作到自然语言仍然存在差距,这会导致培训和部署环境之间的不匹配。在培训期间,将自然语言生成(NLG)模块与USS结合在一起可以部分解决此问题。但是,由于US的策略和NLG是单独优化的,因此在给定的情况下,这些模拟的用户话语可能不够自然。在这项工作中,我们提出了一个基于生成变压器的用户模拟器(Gentus)。 Gentus由编码器结构组成,这意味着它可以共同优化用户策略和自然语言。 Gentus既产生语义动作又产生自然语言话语,从而保留了解释性和增强语言的变化。另外,通过将输入和输出表示为单词序列以及使用大型的预训练语言模型,我们可以在功能表示中实现普遍性。我们通过自动指标和人类评估评估绅士。我们的结果表明,绅士会产生更多的自然语言,并能够以零拍的方式转移到看不见的本体论中。此外,通过加强学习为培训专业用户模拟器打开大门,可以进一步塑造其行为。
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
强化学习和最近的深度增强学习是解决如Markov决策过程建模的顺序决策问题的流行方法。问题和选择算法和超参数的RL建模需要仔细考虑,因为不同的配置可能需要完全不同的性能。这些考虑因素主要是RL专家的任务;然而,RL在研究人员和系统设计师不是RL专家的其他领域中逐渐变得流行。此外,许多建模决策,例如定义状态和动作空间,批次的大小和批量更新的频率以及时间戳的数量通常是手动进行的。由于这些原因,RL框架的自动化不同组成部分具有重要意义,近年来它引起了很多关注。自动RL提供了一个框架,其中RL的不同组件包括MDP建模,算法选择和超参数优化是自动建模和定义的。在本文中,我们探讨了可以在自动化RL中使用的文献和目前的工作。此外,我们讨论了Autorl中的挑战,打开问题和研究方向。
translated by 谷歌翻译
我们研究了任务不合时宜的持续强化学习方法(tACRL)。 TACRL是一种结合了部分观察RL(任务不可知论的结果)和持续学习的困难(CL)的困难,即在任务的非平稳序列上学习。我们将tACRL方法与以前文献规定的软上限进行比较:多任务学习(MTL)方法,这些方法不必处理非平稳数据分布以及任务感知方法,这些方法可以在完整的情况下进行操作可观察性。我们考虑了先前未开发的基线,用于基于重播的复发性RL(3RL),其中我们增强了具有复发机制的RL算法,以减轻部分可观察性和经验经验的重播机制,以使CL中的灾难性遗忘。通过研究一系列RL任务的经验性能,我们发现3RL匹配并克服MTL和任务感知的软上限的情况令人惊讶。我们提出假设,可以解释不断的和任务不足学习研究的这个拐点。通过对流行的多任务和持续学习基准元世界的大规模研究,我们的假设在连续控制任务中进行了经验检验。通过分析包括梯度冲突在内的不同培训统计数据,我们发现证据表明3RL的表现超出其能够快速推断新任务与以前的任务的关系,从而实现前进的转移。
translated by 谷歌翻译
强化学习(RL)已见证其培训对话政策代理人以最大限度地提高用户累计奖励的潜力。但是,奖励可以非常稀疏,它通常仅在对话会话结束时提供,这会导致可接受的对话框的无法实现的交互要求。区别于许多致力于优化策略并恢复奖励,替代地恢复了困难的奖励,这些奖励遭受了容易地陷入困境和模型崩溃,我们将对抗训练分解为两个步骤:1)我们将预先训练的语言模型集成为判别员判断当前的系统动作是否足够好,对最后一个用户操作(即,\ texit {下一个操作预测}); 2)鉴别者给出和额外的本地密集奖励,以指导代理人的探索。实验结果表明,我们的方法显着提高了对话系统的完整速率(〜4.4 \%)和成功率(〜8.0%)。
translated by 谷歌翻译
在与用户进行交流时,以任务为导向的对话系统必须根据对话历史记录在每个回合时跟踪用户的需求。这个称为对话状态跟踪(DST)的过程至关重要,因为它直接告知下游对话政策。近年来,DST引起了很大的兴趣,文本到文本范式作为受欢迎的方法。在本评论论文中,我们首先介绍任务及其相关的数据集。然后,考虑到最近出版的大量出版物,我们确定了2021 - 2022年研究的重点和研究进展。尽管神经方法已经取得了重大进展,但我们认为对话系统(例如概括性)的某些关键方面仍未得到充实。为了激励未来的研究,我们提出了几种研究途径。
translated by 谷歌翻译
与具有粗粒度信息的Crosswoz(中文)和多发性(英文)数据集相比,没有数据集,可以正确处理细粒度和分层级别信息。在本文中,我们在香港发布了一份粤语知识驱动的对话数据集(KDDRES),将多转谈话中的信息放在一个特定的餐厅。我们的语料库包含0.8k次谈话,它来自10家餐厅,提供不同地区的各种风格。除此之外,我们还设计了细粒度的插槽和意图,以更好地捕获语义信息。基准实验和数据统计分析显示了我们数据集的多样性和丰富的注释。我们认为,KDDRE的出版可以是当前对话数据集的必要补充,以及社会中小企业(中小企业)更适合和更有价值,如为每家餐馆建立定制的对话系统。语料库和基准模型是公开可用的。
translated by 谷歌翻译
从演示中学习的方法(LFD)通过模仿用户表现出在获取行为策略方面的成功。但是,即使对于一项任务,LFD也可能需要大量的演示。对于必须通过演示学习许多任务的多功能代理,如果孤立地学习每个任务,此过程将大大负担用户的负担。为了应对这一挑战,我们介绍了从演示中学习的新颖问题,该问题使代理商能够不断地基于从先前演示的任务中学到的知识,以加速学习新任务,从而减少所需的示范量。作为解决这个问题的一种解决方案,我们提出了第一种终身学习方法来进行逆强化学习,该方法通过演示学习连续的任务,不断地在任务之间转移知识以提高绩效。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
部署后,AI代理会遇到超出其自动解决问题能力的问题。利用人类援助可以帮助代理人克服其固有的局限性,并坚决应对陌生的情况。我们提出了一个通用的交互式框架,该框架使代理商能够从对任务和环境有知识的助手那里请求和解释丰富的上下文有用的信息。我们在模拟的人类辅助导航问题上证明了框架的实用性。在我们的方法中学到的援助要求政策的帮助下,导航代理与完全自主行为相比,在以前看不见的环境中发生的任务上的成功率提高了7倍。我们表明,代理商可以根据上下文来利用不同类型的信息,并分析学习援助要求政策的好处和挑战,当助手可以递归地将任务分解为子任务。
translated by 谷歌翻译
A long-standing challenge in artificial intelligence is lifelong learning. In lifelong learning, many tasks are presented in sequence and learners must efficiently transfer knowledge between tasks while avoiding catastrophic forgetting over long lifetimes. On these problems, policy reuse and other multi-policy reinforcement learning techniques can learn many tasks. However, they can generate many temporary or permanent policies, resulting in memory issues. Consequently, there is a need for lifetime-scalable methods that continually refine a policy library of a pre-defined size. This paper presents a first approach to lifetime-scalable policy reuse. To pre-select the number of policies, a notion of task capacity, the maximal number of tasks that a policy can accurately solve, is proposed. To evaluate lifetime policy reuse using this method, two state-of-the-art single-actor base-learners are compared: 1) a value-based reinforcement learner, Deep Q-Network (DQN) or Deep Recurrent Q-Network (DRQN); and 2) an actor-critic reinforcement learner, Proximal Policy Optimisation (PPO) with or without Long Short-Term Memory layer. By selecting the number of policies based on task capacity, D(R)QN achieves near-optimal performance with 6 policies in a 27-task MDP domain and 9 policies in an 18-task POMDP domain; with fewer policies, catastrophic forgetting and negative transfer are observed. Due to slow, monotonic improvement, PPO requires fewer policies, 1 policy for the 27-task domain and 4 policies for the 18-task domain, but it learns the tasks with lower accuracy than D(R)QN. These findings validate lifetime-scalable policy reuse and suggest using D(R)QN for larger and PPO for smaller library sizes.
translated by 谷歌翻译
最近,培训预培训方法在以任务为导向的对话框(TOD)系统中表现出了很大的成功。但是,大多数现有的预培训模型用于TOD专注于对话的理解或对话生成,但并非两者兼而有之。在本文中,我们提出了Space-3,这是一种新型的统一的半监督预培训的预训练的对话模型,从大规模对话CORPORA中学习有限的注释,可以有效地对广泛的下游对话任务进行微调。具体而言,Space-3由单个变压器中的四个连续组件组成,以维护TOD系统中的任务流:(i)对话框编码模块编码对话框历史记录,(ii)对话框理解模块以从任一用户中提取语义向量查询或系统响应,(iii)一个对话框策略模块,以生成包含响应高级语义的策略向量,以及(iv)对话框生成模块以产生适当的响应。我们为每个组件设计一个专门的预训练目标。具体而言,我们预先培训对话框编码模块,使用跨度掩码语言建模,以学习上下文化对话框信息。为了捕获“结构化对话框”语义,我们通过额外的对话注释通过新颖的树诱导的半监视对比度学习目标来预先培训对话框理解模块。此外,我们通过将其输出策略向量与响应响应的语义向量之间的L2距离最小化以进行策略优化,从而预先培训对话策略模块。最后,对话框生成模型由语言建模预先训练。结果表明,Space-3在八个下游对话框基准中实现最新性能,包括意图预测,对话框状态跟踪和端到端对话框建模。我们还表明,在低资源设置下,Space-3比现有模型具有更强的射击能力。
translated by 谷歌翻译