我们研究了任务不合时宜的持续强化学习方法(tACRL)。 TACRL是一种结合了部分观察RL(任务不可知论的结果)和持续学习的困难(CL)的困难,即在任务的非平稳序列上学习。我们将tACRL方法与以前文献规定的软上限进行比较:多任务学习(MTL)方法,这些方法不必处理非平稳数据分布以及任务感知方法,这些方法可以在完整的情况下进行操作可观察性。我们考虑了先前未开发的基线,用于基于重播的复发性RL(3RL),其中我们增强了具有复发机制的RL算法,以减轻部分可观察性和经验经验的重播机制,以使CL中的灾难性遗忘。通过研究一系列RL任务的经验性能,我们发现3RL匹配并克服MTL和任务感知的软上限的情况令人惊讶。我们提出假设,可以解释不断的和任务不足学习研究的这个拐点。通过对流行的多任务和持续学习基准元世界的大规模研究,我们的假设在连续控制任务中进行了经验检验。通过分析包括梯度冲突在内的不同培训统计数据,我们发现证据表明3RL的表现超出其能够快速推断新任务与以前的任务的关系,从而实现前进的转移。
translated by 谷歌翻译
AI的一个关键挑战是构建体现的系统,该系统在动态变化的环境中运行。此类系统必须适应更改任务上下文并持续学习。虽然标准的深度学习系统实现了最先进的静态基准的结果,但它们通常在动态方案中挣扎。在这些设置中,来自多个上下文的错误信号可能会彼此干扰,最终导致称为灾难性遗忘的现象。在本文中,我们将生物学启发的架构调查为对这些问题的解决方案。具体而言,我们表明树突和局部抑制系统的生物物理特性使网络能够以特定于上下文的方式动态限制和路由信息。我们的主要贡献如下。首先,我们提出了一种新颖的人工神经网络架构,该架构将活跃的枝形和稀疏表示融入了标准的深度学习框架中。接下来,我们在需要任务的适应性的两个单独的基准上研究这种架构的性能:Meta-World,一个机器人代理必须学习同时解决各种操纵任务的多任务强化学习环境;和一个持续的学习基准,其中模型的预测任务在整个训练中都会发生变化。对两个基准的分析演示了重叠但不同和稀疏的子网的出现,允许系统流动地使用最小的遗忘。我们的神经实现标志在单一架构上第一次在多任务和持续学习设置上取得了竞争力。我们的研究揭示了神经元的生物学特性如何通知深度学习系统,以解决通常不可能对传统ANN来解决的动态情景。
translated by 谷歌翻译
We study the use of model-based reinforcement learning methods, in particular, world models for continual reinforcement learning. In continual reinforcement learning, an agent is required to solve one task and then another sequentially while retaining performance and preventing forgetting on past tasks. World models offer a task-agnostic solution: they do not require knowledge of task changes. World models are a straight-forward baseline for continual reinforcement learning for three main reasons. Firstly, forgetting in the world model is prevented by persisting existing experience replay buffers across tasks, experience from previous tasks is replayed for learning the world model. Secondly, they are sample efficient. Thirdly and finally, they offer a task-agnostic exploration strategy through the uncertainty in the trajectories generated by the world model. We show that world models are a simple and effective continual reinforcement learning baseline. We study their effectiveness on Minigrid and Minihack continual reinforcement learning benchmarks and show that it outperforms state of the art task-agnostic continual reinforcement learning methods.
translated by 谷歌翻译
持续学习系统将知识从先前看到的任务转移以最大程度地提高新任务的能力是该领域的重大挑战,从而限制了持续学习解决方案对现实情况的适用性。因此,本研究旨在扩大我们在不断加强学习的特定情况下对转移及其驱动力的理解。我们采用SAC作为基础RL算法和持续的世界作为连续控制任务的套件。我们系统地研究SAC(演员和评论家,勘探和数据)的不同组成部分如何影响转移功效,并提供有关各种建模选项的建议。在最近的连续世界基准中评估了最佳的选择,即称为clonex-sac。 Clonex-SAC获得了87%的最终成功率,而Packnet的80%是基准中的最佳方法。此外,根据连续世界提供的指标,转移从0.18增至0.54。
translated by 谷歌翻译
我们开发了一种新的持续元学习方法,以解决连续多任务学习中的挑战。在此设置中,代理商的目标是快速通过任何任务序列实现高奖励。先前的Meta-Creenifiltive学习算法已经表现出有希望加速收购新任务的结果。但是,他们需要在培训期间访问所有任务。除了简单地将过去的经验转移到新任务,我们的目标是设计学习学习的持续加强学习算法,使用他们以前任务的经验更快地学习新任务。我们介绍了一种新的方法,连续的元策略搜索(Comps),通过以增量方式,在序列中的每个任务上,通过序列的每个任务来消除此限制,而无需重新访问先前的任务。 Comps持续重复两个子程序:使用RL学习新任务,并使用RL的经验完全离线Meta学习,为后续任务学习做好准备。我们发现,在若干挑战性连续控制任务的旧序列上,Comps优于持续的持续学习和非政策元增强方法。
translated by 谷歌翻译
Lifelong learning aims to create AI systems that continuously and incrementally learn during a lifetime, similar to biological learning. Attempts so far have met problems, including catastrophic forgetting, interference among tasks, and the inability to exploit previous knowledge. While considerable research has focused on learning multiple input distributions, typically in classification, lifelong reinforcement learning (LRL) must also deal with variations in the state and transition distributions, and in the reward functions. Modulating masks, recently developed for classification, are particularly suitable to deal with such a large spectrum of task variations. In this paper, we adapted modulating masks to work with deep LRL, specifically PPO and IMPALA agents. The comparison with LRL baselines in both discrete and continuous RL tasks shows competitive performance. We further investigated the use of a linear combination of previously learned masks to exploit previous knowledge when learning new tasks: not only is learning faster, the algorithm solves tasks that we could not otherwise solve from scratch due to extremely sparse rewards. The results suggest that RL with modulating masks is a promising approach to lifelong learning, to the composition of knowledge to learn increasingly complex tasks, and to knowledge reuse for efficient and faster learning.
translated by 谷歌翻译
A long-standing challenge in artificial intelligence is lifelong learning. In lifelong learning, many tasks are presented in sequence and learners must efficiently transfer knowledge between tasks while avoiding catastrophic forgetting over long lifetimes. On these problems, policy reuse and other multi-policy reinforcement learning techniques can learn many tasks. However, they can generate many temporary or permanent policies, resulting in memory issues. Consequently, there is a need for lifetime-scalable methods that continually refine a policy library of a pre-defined size. This paper presents a first approach to lifetime-scalable policy reuse. To pre-select the number of policies, a notion of task capacity, the maximal number of tasks that a policy can accurately solve, is proposed. To evaluate lifetime policy reuse using this method, two state-of-the-art single-actor base-learners are compared: 1) a value-based reinforcement learner, Deep Q-Network (DQN) or Deep Recurrent Q-Network (DRQN); and 2) an actor-critic reinforcement learner, Proximal Policy Optimisation (PPO) with or without Long Short-Term Memory layer. By selecting the number of policies based on task capacity, D(R)QN achieves near-optimal performance with 6 policies in a 27-task MDP domain and 9 policies in an 18-task POMDP domain; with fewer policies, catastrophic forgetting and negative transfer are observed. Due to slow, monotonic improvement, PPO requires fewer policies, 1 policy for the 27-task domain and 4 policies for the 18-task domain, but it learns the tasks with lower accuracy than D(R)QN. These findings validate lifetime-scalable policy reuse and suggest using D(R)QN for larger and PPO for smaller library sizes.
translated by 谷歌翻译
The ability for an agent to continuously learn new skills without catastrophically forgetting existing knowledge is of critical importance for the development of generally intelligent agents. Most methods devised to address this problem depend heavily on well-defined task boundaries, and thus depend on human supervision. Our task-agnostic method, Self-Activating Neural Ensembles (SANE), uses a modular architecture designed to avoid catastrophic forgetting without making any such assumptions. At the beginning of each trajectory, a module in the SANE ensemble is activated to determine the agent's next policy. During training, new modules are created as needed and only activated modules are updated to ensure that unused modules remain unchanged. This system enables our method to retain and leverage old skills, while growing and learning new ones. We demonstrate our approach on visually rich procedurally generated environments.
translated by 谷歌翻译
人类通常通过将它们分解为更容易的子问题,然后结合子问题解决方案来解决复杂的问题。这种类型的组成推理允许在解决共享一部分基础构图结构的未来任务时重复使用子问题解决方案。在持续或终身的强化学习(RL)设置中,将知识分解为可重复使用的组件的能力将使代理通过利用积累的组成结构来快速学习新的RL任务。我们基于神经模块探索一种特定形式的组成形式,并提出了一组RL问题,可以直观地接受组成溶液。从经验上讲,我们证明了神经组成确实捕获了问题空间的基本结构。我们进一步提出了一种构图终身RL方法,该方法利用累积的神经成分来加速学习未来任务的学习,同时通过离线RL通过离线RL保留以前的RL,而不是重播经验。
translated by 谷歌翻译
持续学习领域(CL)寻求开发通过与非静止环境的交互累积随时间累积知识和技能的算法。在实践中,存在一种夸张的评估程序和算法解决方案(方法),每个潜在的潜在不相交的假设集。这种品种使得在CL困难中进行了衡量进展。我们提出了一种设置的分类,其中每个设置被描述为一组假设。从这个视图中出现了一棵树形的层次结构,更多的一般环境成为具有更严格假设的人的父母。这使得可以使用继承来共享和重用研究,因为开发给定设置的方法也使其直接适用于其任何孩子。我们将此想法实例化为名为SequoIa的公开软件框架,其特征来自持续监督学习(CSL)和持续加强学习(CRL)域的各种环境。除了来自外部图书馆的更专业的方法之外,SemoIa还包括一种易于延伸和定制的不断增长的方法。我们希望这一新的范式及其第一个实施可以帮助统一和加速CL的研究。您可以通过访问github.com/lebrice/squia来帮助我们长大树。
translated by 谷歌翻译
深度神经网络的强大学习能力使强化学习者能够直接从连续环境中学习有效的控制政策。从理论上讲,为了实现稳定的性能,神经网络假设I.I.D.不幸的是,在训练数据在时间上相关且非平稳的一般强化学习范式中,输入不存在。这个问题可能导致“灾难性干扰”和性能崩溃的现象。在本文中,我们提出智商,即干涉意识深度Q学习,以减轻单任务深度加固学习中的灾难性干扰。具体来说,我们求助于在线聚类,以实现在线上下文部门,以及一个多头网络和一个知识蒸馏正规化术语,用于保留学习上下文的政策。与现有方法相比,智商基于深Q网络,始终如一地提高稳定性和性能,并通过对经典控制和ATARI任务进行了广泛的实验。该代码可在以下网址公开获取:https://github.com/sweety-dm/interference-aware-ware-deep-q-learning。
translated by 谷歌翻译
Deep reinforcement learning algorithms require large amounts of experience to learn an individual task. While in principle meta-reinforcement learning (meta-RL) algorithms enable agents to learn new skills from small amounts of experience, several major challenges preclude their practicality. Current methods rely heavily on on-policy experience, limiting their sample efficiency. The also lack mechanisms to reason about task uncertainty when adapting to new tasks, limiting their effectiveness in sparse reward problems. In this paper, we address these challenges by developing an offpolicy meta-RL algorithm that disentangles task inference and control. In our approach, we perform online probabilistic filtering of latent task variables to infer how to solve a new task from small amounts of experience. This probabilistic interpretation enables posterior sampling for structured and efficient exploration. We demonstrate how to integrate these task variables with off-policy RL algorithms to achieve both metatraining and adaptation efficiency. Our method outperforms prior algorithms in sample efficiency by 20-100X as well as in asymptotic performance on several meta-RL benchmarks.
translated by 谷歌翻译
有效的探索是深度强化学习的关键挑战。几种方法,例如行为先验,能够利用离线数据,以便在复杂任务上有效加速加强学习。但是,如果手动的任务与所证明的任务过度偏离,则此类方法的有效性是有限的。在我们的工作中,我们建议从离线数据中学习功能,这些功能由更加多样化的任务共享,例如动作与定向之间的相关性。因此,我们介绍了无国有先验,该先验直接在显示的轨迹中直接建模时间一致性,并且即使在对简单任务收集的数据进行培训时,也能够在复杂的任务中推动探索。此外,我们通过从政策和行动之前的概率混合物中动态采样动作,引入了一种新颖的集成方案,用于非政策强化学习中的动作研究。我们将我们的方法与强大的基线相提并论,并提供了经验证据,表明它可以在稀疏奖励环境下的长途持续控制任务中加速加强学习。
translated by 谷歌翻译
Lack of performance when it comes to continual learning over non-stationary distributions of data remains a major challenge in scaling neural network learning to more human realistic settings. In this work we propose a new conceptualization of the continual learning problem in terms of a temporally symmetric trade-off between transfer and interference that can be optimized by enforcing gradient alignment across examples. We then propose a new algorithm, Meta-Experience Replay (MER), that directly exploits this view by combining experience replay with optimization based meta-learning. This method learns parameters that make interference based on future gradients less likely and transfer based on future gradients more likely. 1 We conduct experiments across continual lifelong supervised learning benchmarks and non-stationary reinforcement learning environments demonstrating that our approach consistently outperforms recently proposed baselines for continual learning. Our experiments show that the gap between the performance of MER and baseline algorithms grows both as the environment gets more non-stationary and as the fraction of the total experiences stored gets smaller.
translated by 谷歌翻译
Progress in continual reinforcement learning has been limited due to several barriers to entry: missing code, high compute requirements, and a lack of suitable benchmarks. In this work, we present CORA, a platform for Continual Reinforcement Learning Agents that provides benchmarks, baselines, and metrics in a single code package. The benchmarks we provide are designed to evaluate different aspects of the continual RL challenge, such as catastrophic forgetting, plasticity, ability to generalize, and sample-efficient learning. Three of the benchmarks utilize video game environments (Atari, Procgen, NetHack). The fourth benchmark, CHORES, consists of four different task sequences in a visually realistic home simulator, drawn from a diverse set of task and scene parameters. To compare continual RL methods on these benchmarks, we prepare three metrics in CORA: Continual Evaluation, Isolated Forgetting, and Zero-Shot Forward Transfer. Finally, CORA includes a set of performant, open-source baselines of existing algorithms for researchers to use and expand on. We release CORA and hope that the continual RL community can benefit from our contributions, to accelerate the development of new continual RL algorithms.
translated by 谷歌翻译
Meta-reinforcement learning algorithms can enable robots to acquire new skills much more quickly, by leveraging prior experience to learn how to learn. However, much of the current research on meta-reinforcement learning focuses on task distributions that are very narrow. For example, a commonly used meta-reinforcement learning benchmark uses different running velocities for a simulated robot as different tasks. When policies are meta-trained on such narrow task distributions, they cannot possibly generalize to more quickly acquire entirely new tasks. Therefore, if the aim of these methods is enable faster acquisition of entirely new behaviors, we must evaluate them on task distributions that are sufficiently broad to enable generalization to new behaviors. In this paper, we propose an open-source simulated benchmark for meta-reinforcement learning and multitask learning consisting of 50 distinct robotic manipulation tasks. Our aim is to make it possible to develop algorithms that generalize to accelerate the acquisition of entirely new, held-out tasks. We evaluate 7 state-of-the-art meta-reinforcement learning and multi-task learning algorithms on these tasks. Surprisingly, while each task and its variations (e.g., with different object positions) can be learned with reasonable success, these algorithms struggle to learn with multiple tasks at the same time, even with as few as ten distinct training tasks. Our analysis and open-source environments pave the way for future research in multi-task learning and meta-learning that can enable meaningful generalization, thereby unlocking the full potential of these methods. 1
translated by 谷歌翻译
元强化学习(RL)方法可以使用比标准RL少的数据级的元培训策略,但元培训本身既昂贵又耗时。如果我们可以在离线数据上进行元训练,那么我们可以重复使用相同的静态数据集,该数据集将一次标记为不同任务的奖励,以在元测试时间适应各种新任务的元训练策略。尽管此功能将使Meta-RL成为现实使用的实用工具,但离线META-RL提出了除在线META-RL或标准离线RL设置之外的其他挑战。 Meta-RL学习了一种探索策略,该策略收集了用于适应的数据,并元培训策略迅速适应了新任务的数据。由于该策略是在固定的离线数据集上进行了元训练的,因此当适应学识渊博的勘探策略收集的数据时,它可能表现得不可预测,这与离线数据有系统地不同,从而导致分布变化。我们提出了一种混合脱机元元素算法,该算法使用带有奖励的脱机数据来进行自适应策略,然后收集其他无监督的在线数据,而无需任何奖励标签来桥接这一分配变化。通过不需要在线收集的奖励标签,此数据可以便宜得多。我们将我们的方法比较了在模拟机器人的运动和操纵任务上进行离线元rl的先前工作,并发现使用其他无监督的在线数据收集可以显着提高元训练政策的自适应能力,从而匹配完全在线的表现。在一系列具有挑战性的域上,需要对新任务进行概括。
translated by 谷歌翻译
深入学习的强化学习(RL)的结合导致了一系列令人印象深刻的壮举,许多相信(深)RL提供了一般能力的代理。然而,RL代理商的成功往往对培训过程中的设计选择非常敏感,这可能需要繁琐和易于易于的手动调整。这使得利用RL对新问题充满挑战,同时也限制了其全部潜力。在许多其他机器学习领域,AutomL已经示出了可以自动化这样的设计选择,并且在应用于RL时也会产生有希望的初始结果。然而,自动化强化学习(AutorL)不仅涉及Automl的标准应用,而且还包括RL独特的额外挑战,其自然地产生了不同的方法。因此,Autorl已成为RL中的一个重要研究领域,提供来自RNA设计的各种应用中的承诺,以便玩游戏等游戏。鉴于RL中考虑的方法和环境的多样性,在不同的子领域进行了大部分研究,从Meta学习到进化。在这项调查中,我们寻求统一自动的领域,我们提供常见的分类法,详细讨论每个区域并对研究人员来说是一个兴趣的开放问题。
translated by 谷歌翻译
Meta强化学习(META-RL)旨在学习一项政策,同时并迅速适应新任务。它需要大量从培训任务中汲取的数据,以推断任务之间共享的共同结构。如果没有沉重的奖励工程,长期任务中的稀疏奖励加剧了元RL样品效率的问题。 Meta-RL中的另一个挑战是任务之间难度级别的差异,这可能会导致一个简单的任务主导共享策略的学习,从而排除政策适应新任务。这项工作介绍了一个新颖的目标功能,可以在培训任务中学习动作翻译。从理论上讲,我们可以验证带有操作转换器的传输策略的值可以接近源策略的值和我们的目标函数(大约)上限的值差。我们建议将动作转换器与基于上下文的元元算法相结合,以更好地收集数据,并在元训练期间更有效地探索。我们的方法从经验上提高了稀疏奖励任务上元RL算法的样本效率和性能。
translated by 谷歌翻译
智能代理人应该有能力利用先前学习的任务中的知识,以便快速有效地学习新任务。元学习方法已成为实现这一目标的流行解决方案。然而,迄今为止,元强化学习(META-RL)算法仅限于具有狭窄任务分布的简单环境。此外,预处理的范式随后进行了微调以适应新任务,这是一种简单而有效的解决方案,这些解决方案是监督和自我监督的学习。这使质疑元学习方法的好处在加强学习中的好处,这通常是以高复杂性为代价的。因此,我们研究了包括Procgen,rlbench和Atari在内的各种基于视觉的基准测试中的元RL方法,在这些基准测试中,对完全新颖的任务进行了评估。我们的发现表明,当对不同任务(而不是相同任务的不同变化)评估元学习方法时,对新任务进行微调的多任务预处理也相同或更好,或者更好,比用meta进行元数据。测试时间适应。这对于将来的研究令人鼓舞,因为多任务预处理往往比Meta-RL更简单和计算更便宜。从这些发现中,我们主张评估未来的Meta-RL方法在更具挑战性的任务上,并包括以简单但强大的基线进行微调预处理。
translated by 谷歌翻译