时间序列预测是许多人类活动的关键任务,例如天气预报或预测股价。解决此问题的一种解决方案是使用复发性神经网络(RNN)。尽管它们可以产生准确的预测,但他们的学习过程缓慢而复杂。在这里,我们提出了一个量子复发的神经网络(QRNN)来解决这些障碍。网络的设计基于连续变量的量子计算范式。我们证明网络能够学习一些类型的时间数据的时间依赖性。我们的数值模拟表明,与经典网络相比,QRNN收敛到最佳权重。此外,对于少数可训练的参数,它可以实现比后者更低的损失。
translated by 谷歌翻译
Recent developments in quantum computing and machine learning have propelled the interdisciplinary study of quantum machine learning. Sequential modeling is an important task with high scientific and commercial value. Existing VQC or QNN-based methods require significant computational resources to perform the gradient-based optimization of a larger number of quantum circuit parameters. The major drawback is that such quantum gradient calculation requires a large amount of circuit evaluation, posing challenges in current near-term quantum hardware and simulation software. In this work, we approach sequential modeling by applying a reservoir computing (RC) framework to quantum recurrent neural networks (QRNN-RC) that are based on classical RNN, LSTM and GRU. The main idea to this RC approach is that the QRNN with randomly initialized weights is treated as a dynamical system and only the final classical linear layer is trained. Our numerical simulations show that the QRNN-RC can reach results comparable to fully trained QRNN models for several function approximation and time series prediction tasks. Since the QRNN training complexity is significantly reduced, the proposed model trains notably faster. In this work we also compare to corresponding classical RNN-based RC implementations and show that the quantum version learns faster by requiring fewer training epochs in most cases. Our results demonstrate a new possibility to utilize quantum neural network for sequential modeling with greater quantum hardware efficiency, an important design consideration for noisy intermediate-scale quantum (NISQ) computers.
translated by 谷歌翻译
In the era of noisy intermediate scale quantum devices, variational quantum circuits (VQCs) are currently one of the main strategies for building quantum machine learning models. These models are made up of a quantum part and a classical part. The quantum part is given by a parametrization $U$, which, in general, is obtained from the product of different quantum gates. By its turn, the classical part corresponds to an optimizer that updates the parameters of $U$ in order to minimize a cost function $C$. However, despite the many applications of VQCs, there are still questions to be answered, such as for example: What is the best sequence of gates to be used? How to optimize their parameters? Which cost function to use? How the architecture of the quantum chips influences the final results? In this article, we focus on answering the last question. We will show that, in general, the cost function will tend to a typical average value the closer the parameterization used is from a $2$-design. Therefore, the closer this parameterization is to a $2$-design, the less the result of the quantum neural network model will depend on its parametrization. As a consequence, we can use the own architecture of the quantum chips to defined the VQC parametrization, avoiding the use of additional swap gates and thus diminishing the VQC depth and the associated errors.
translated by 谷歌翻译
本文介绍了一个基于量子神经网络的深度学习系统,用于在平面上特定几何模式(两个摩尔分类问题)的点的二进制分类。我们认为,混合深度学习系统(经典 +量子)的使用不仅可以在计算加速度方面带来合理的好处,而且在理解基本现象和机制方面都可以带来好处。这将导致创建新的机器学习形式,以及量子计算世界中的强大发展。所选数据集基于2D二进制分类生成器,该生成器有助于测试特定算法的有效性;它是一组2D点,形成两个散布的半圆。它在二维表示空间中显示了两个分离的数据集:因此,功能是单个点的两个坐标,$ x_1 $和$ x_2 $。目的是产生一个量子深神经网络,其可识别和分类点的可训练参数数量最少。
translated by 谷歌翻译
由于量子电路上的旋转组件,基于变异电路的某些量子神经网络可以被认为等于经典的傅立叶网络。另外,它们可用于预测连续函数的傅立叶系数。时间序列数据表示时间变量的状态。由于某些时间序列数据也可以视为连续功能,因此我们可以期望量子机学习模型能够在时间序列数据上成功执行许多数据分析任务。因此,重要的是研究用于时间数据处理的新量子逻辑并分析量子计算机上数据的内在关系。在本文中,我们通过使用需要几个量子门的简单量子运算符,浏览经典数据预处理和对Arima模型进行预测的量子类似物。然后,我们讨论未来的方向和一些可用于量子计算机时间数据分析的工具/算法。
translated by 谷歌翻译
Quantum机器学习目前正在受到极大的关注,但是与实用应用的经典机器学习技术相比,其有用性尚不清楚。但是,有迹象表明,某些量子机学习算法可能会提高其经典同行的培训能力 - 在很少有培训数据的情况下,这在情况下可能特别有益。这种情况自然出现在医学分类任务中。在本文中,提出了不同的杂种量子卷积神经网络(QCCNN),提出了不同的量子电路设计和编码技术。它们应用于二维医学成像数据,例如在计算机断层扫描中具有不同的,潜在的恶性病变。这些QCCNN的性能已经与它们的经典同行之一相似,因此鼓励进一步研究将这些算法应用于医学成像任务的方向。
translated by 谷歌翻译
计算机科学的关键任务之一是缩短各种数据类型的处理时间,即图像,这对于不同领域至关重要 - 从医学和物流到虚拟购物。与经典计算机相比,量子计算机能够进行并行数据处理,从而减少了数据处理时间。量子计算机的这种质量激发了对量子技术适用于现实生活任务的潜力的深入研究。在较小的输入数据上已经揭示了一些进展。在这项研究工作中,我旨在通过跳过中间测量步骤来减少处理时间的输入数据(我使用图像从2 x 2到8 x 8)。假设是,对于增加的输入数据,每个量子卷积层之后的中间测量步骤的省略将改善输出度量结果并加速数据处理。为了检验假设,我进行了实验,以在每个网络中选择最佳的激活函数及其导数。该假设在输出平方误差(MSE)方面得到了部分证实 - 在经典卷积神经网络(CNN)训练的结果下,该假设从0.25下降到量子卷积神经网络(QCNN)训练的结果。然而,就训练时间而言,在CNN中为1.5分钟,在最小冗长的训练迭代中为4小时37分钟,该假设被拒绝。
translated by 谷歌翻译
最近的工作已经开始探索参数化量子电路(PQC)作为一般函数近似器的潜力。在这项工作中,我们提出了一种量子古典的深网络结构,以提高经典的CNN模型辨别性。卷积层使用线性滤波器来扫描输入数据。此外,我们构建PQC,这是一种更有效的函数近似器,具有更复杂的结构,以捕获接收领域内的特征。通过以与CNN类似的方式将PQC滑过输入来获得特征图。我们还为所提出的模型提供培训算法。我们设计中使用的混合模型通过数值模拟验证。我们展示了MNIST上合理的分类性能,我们将性能与不同的设置中的模型进行比较。结果揭示了具有高表现性的ANSATZ模型实现了更低的成本和更高的准确性。
translated by 谷歌翻译
我们设计和分析了量子变压器,扩展了最先进的经典变压器神经网络体系结构,已知在自然语言处理和图像分析中表现出色。在先前用于数据加载和正交神经层的参数化量子电路的工作的基础上,我们引入了三种量子注意机制,包括基于复合矩阵的量子变压器。这些量子体系结构可以使用浅量子电路构建,并可以提供定性不同的分类模型。与最佳的经典变压器和其他经典基准相比,我们对标准医疗图像数据集进行了量子变压器的广泛模拟,这些量子变压器表现出竞争力,有时表现更好。与经典算法相对于分类图像的大小,我们的量子注意层的计算复杂性被证明是有利的。与拥有数百万参数的最佳经典方法相比,我们的量子体系结构具有数千个参数。最后,我们在超导量子计算机上实施了量子变压器,并获得了多达六个量子实验的令人鼓舞的结果。
translated by 谷歌翻译
在这项工作中,我们利用量子深的增强学习作为方法,以在三个模拟的复杂性的模拟环境中为简单的,轮式机器人学习导航任务。我们显示了与经典基线相比,在混合量子古典设置中训练有良好建立的深钢筋学习技术的参数化量子电路的相似性能。据我们所知,这是用于机器人行为的量子机学习(QML)的首次演示。因此,我们将机器人技术建立为QML算法的可行研究领域,此后量子计算和量子机学习是自治机器人技术未来进步的潜在技术。除此之外,我们讨论了当前的方法的限制以及自动机器人量子机学习领域的未来研究方向。
translated by 谷歌翻译
随着实际量子计算机中的量子位数(QUBits)的数量恒定增加,实现和加速量子计算机上的普遍深入学习正在成为可能。随着这种趋势,基于量子神经元的不同设计出现了量子神经结构。 Quantum深度学习中的一个基本问题出现:什么是最好的量子神经结构?灵感来自古典计算的神经结构设计,该古典计算通常采用多种类型的神经元,本文首次尝试混合量子神经元设计来构建量子神经结构。我们观察到现有的量子神经元设计可能是完全不同但互补的,例如来自变分量子电路(VQC)和量子流的神经元。更具体地说,VQC可以应用真实值的权重,但遭受扩展到多个层,而量子流可以有效地构建多层网络,但仅限于使用二进制权重。要采取各自的优势,我们建议将它们混合在一起并弄清楚无缝连接的方法,而无需额外的昂贵测量。我们进一步研究了混合量子神经元的设计原理,这可以为未来提供量子神经结构勘探的指导。实验结果表明,具有混合量子神经元的鉴定的量子神经结构可以在MNIST数据集中达到90.62%的准确性,而VQC和量子流量分别比为52.77%和69.92%。
translated by 谷歌翻译
量子计算是使用量子力学执行计算的过程。该领域研究某些亚杀菌粒子的量子行为,以便随后在执行计算,以及大规模信息处理中使用。这些能力可以在计算时间和经典计算机上的成本方面提供量子计算机的优势。如今,由于计算复杂性或计算所需的时间,具有科学挑战,这是由于古典计算而无法执行,并且量子计算是可能的答案之一。然而,电流量子器件尚未实现必要的QUBITS,并且没有足够的容错才能实现这些目标。尽管如此,还有其他领域,如机器学习或化学,其中量子计算对电流量子器件有用。本手稿旨在展示2017年和2021年之间发布的论文的系统文献综述,以确定,分析和分类量子机器学习和其应用中使用的不同算法。因此,该研究确定了使用量子机器学习技术和算法的52篇文章。发现算法的主要类型是经典机器学习算法的量子实现,例如支持向量机或K最近邻模型,以及古典的深度学习算法,如量子神经网络。许多文章试图解决目前通过古典机器学习回答的问题,但使用量子设备和算法。即使结果很有希望,量子机器学习也远未实现其全部潜力。由于现有量子计算机缺乏足够的质量,速度和比例以允许量子计算来实现其全部潜力,因此需要提高量子硬件。
translated by 谷歌翻译
深度学习是当今机器学习中最成功和最深远的策略之一。然而,神经网络的规模和效用仍然受到用于训练它们的当前硬件的极大限制。随着常规电脑快速接近将在未来几年的情况下,常规计算机迅速接近物理限制,这些问题越来越紧。由于这些原因,科学家们已经开始探索替代计算平台,如量子计算机,用于训练神经网络。近年来,变分量子电路已成为在嘈杂的中间秤量子器件上量子深度学习的最成功的方法之一。我们提出了一种混合量子古典神经网络架构,其中每个神经元是变形量子电路。我们使用模拟通用量子计算机和艺术通用量子计算机的状态来统一地分析该混合神经网络对一系列二元分类数据集的性能。在模拟硬件上,我们观察到混合神经网络的分类精度高出10%,比各个变分量子电路更好地最小化了20%。在Quantum硬件上,我们观察到每个模型仅在Qubit和栅极计数足够小时执行良好。
translated by 谷歌翻译
使用量子卷积神经网络(QCNN)的机器学习在量子和经典数据分类中都取得了成功。在先前的研究中,在少数参数制度中,在相同的训练条件下,QCNN的分类准确性比其经典对应物具有更高的分类精度。但是,由于量子电路的大小有限,因此很难检查大规模量子模型的一般性能,这可以在不久的将来可靠地实施。我们建议转移学习是在嘈杂的中间量子量子时代利用小QCNN的有效策略。在经典到量词转移学习框架中,QCNN可以通过使用预训练的经典卷积神经网络(CNN)来解决复杂的分类问题,而无需大规模量子电路。我们对QCNN模型进行了数值模拟,并在转移学习下对MNIST数据分类进行了各种量子卷积和汇总操作,其中经典的CNN经过了时尚持续数据的培训。结果表明,在相似的训练条件下,从经典到量子CNN的转移学习比纯粹的经典转移学习模型要好得多。
translated by 谷歌翻译
在这项工作中,我们使用出生的机器在时域射频天文学中引入了一种新的脉冲轨分类问题的方法,通常称为A \ EMPH {量子神经网络}。使用单个qubit架构,我们表明脉冲节分类问题很好地展示了Bloch球体,并且可以实现更加古典机器学习方法的可比精度。我们介绍了一种用于本工作中使用的Pulsar数据的新型单QUBET编码,并表明这与多Qubit Qaoa编码相当执行。
translated by 谷歌翻译
对机器学习模型训练的栅极基量子电路的发展越来越兴趣。然而,关于电路设计的参数,噪声和其他测量误差对量子机器学习模型性能的影响很少。在本文中,我们探讨了使用多个标准机器学习数据集和IBM的Qiskit模拟器的关键电路设计参数(Qubits,Deposit等)的实际意义。总的来,我们评估超过6500个独特电路,以$ n \约120700美元。我们发现,一般浅(低深度)宽(更多Qubits)电路拓扑倾向于在没有噪声的情况下更优于更深的内容。我们还探讨了不同噪声概念的影响和影响,并讨论了对分类机学习任务的噪声更多/较低的电路拓扑。基于该研究结果,我们定义了使用基于门的NISQ量子计算机来实现近期承诺的电路拓扑指南。
translated by 谷歌翻译
在过去的十年中,机器学习彻底改变了基于视力的质量评估,卷积神经网络(CNN)现在已成为标准。在本文中,我们考虑了该开发中的潜在下一步,并描述了有效地将经典图像数据映射到量子状态并允许可靠的图像分析的Quanvolutional神经网络(QNN)算法。我们实际上演示了如何在计算机视觉中利用量子设备以及如何将量子卷积引入古典CNN中。在处理工业质量控制中的现实世界用例时,我们在Pennylane框架内实施了混合QNN模型,并从经验上观察它,可以使用比经典CNN更少的培训数据实现更好的预测。换句话说,我们从经验上观察到真正的量子优势,对于由于卓越的数据编码而引起的工业应用。
translated by 谷歌翻译
使用量子计算,本文解决了两个科学压迫和日常相关问题,即化学逆转录,这是半导体供应链的药物/材料发现和安全性的重要一步。我们表明,量子长短期内存(QLSTM)是逆转录合成的可行工具。我们使用QLSTM实现了65%的培训准确性,而经典的LSTM可以达到100%。但是,在测试中,我们使用QLSTM实现80%的精度,而经典LSTM仅以70%的精度达到峰值!我们还展示了量子神经网络(QNN)在硬件安全域中的应用,特别是使用一组功率和区域特洛伊木马功能在硬件特洛伊木马(HT)检测中。QNN模型可实现高达97.27%的检测准确性。
translated by 谷歌翻译
在量子通道歧视的问题中,人们区分给定数量的量子通道,这是通过通过通道发送输入状态并测量输出状态来完成的。这项工作研究了跨量子电路和机器学习技术的应用,用于区分此类渠道。特别是,我们探讨了(i)将此任务嵌入到变化量子计算的框架中的实际实施,(ii)培训基于变异量子电路的量子分类器,以及(iii)应用量子核估计技术。为了测试这三种通道歧视方法,我们考虑了两种不同的去极化因子的一对纠缠破裂的通道和去极化通道。对于方法(i),我们使用广泛讨论的平行和顺序策略来解决解决量子通道歧视问题。我们在更好地收敛与量量较少的量子资源方面展示了后者的优势。具有变分量子分类器(II)的量子通道歧视即使使用随机和混合输入状态以及简单的变异电路也可以运行。基于内核的分类方法(III)也被发现有效,因为它允许人们区分不仅与去极化因子的固定值相关的去极化通道,而是与其范围相关的。此外,我们发现对一种常用核之一的简单修改显着提高了该方法的效率。最后,我们的数值发现表明,通道歧视的变分方法的性能取决于输出态乘积的痕迹。这些发现表明,量子机学习可用于区分通道,例如代表物理噪声过程的通道。
translated by 谷歌翻译
数据装配过程是量子机学习的瓶颈之一,可能会否定任何量子加速。鉴于此,必须采用更有效的数据编码策略。我们提出了一种基于光子的骨气数据编码方案,该方案使用较少的编码层嵌入经典数据点,并通过将数据点映射到高维FOCK空间中,从而规避非线性光学组件的需求。电路的表达能力可以通过输入光子的数量来控制。我们的工作阐明了量子光子学在量子机学习模型的表达能力方面提供的独特优势。通过利用光子数依赖的表达能力,我们提出了三种不同的中间尺度量子兼容二进制分类方法,其所需资源适用于不同监督分类任务。
translated by 谷歌翻译