本文介绍了一个基于量子神经网络的深度学习系统,用于在平面上特定几何模式(两个摩尔分类问题)的点的二进制分类。我们认为,混合深度学习系统(经典 +量子)的使用不仅可以在计算加速度方面带来合理的好处,而且在理解基本现象和机制方面都可以带来好处。这将导致创建新的机器学习形式,以及量子计算世界中的强大发展。所选数据集基于2D二进制分类生成器,该生成器有助于测试特定算法的有效性;它是一组2D点,形成两个散布的半圆。它在二维表示空间中显示了两个分离的数据集:因此,功能是单个点的两个坐标,$ x_1 $和$ x_2 $。目的是产生一个量子深神经网络,其可识别和分类点的可训练参数数量最少。
translated by 谷歌翻译
量子计算是使用量子力学执行计算的过程。该领域研究某些亚杀菌粒子的量子行为,以便随后在执行计算,以及大规模信息处理中使用。这些能力可以在计算时间和经典计算机上的成本方面提供量子计算机的优势。如今,由于计算复杂性或计算所需的时间,具有科学挑战,这是由于古典计算而无法执行,并且量子计算是可能的答案之一。然而,电流量子器件尚未实现必要的QUBITS,并且没有足够的容错才能实现这些目标。尽管如此,还有其他领域,如机器学习或化学,其中量子计算对电流量子器件有用。本手稿旨在展示2017年和2021年之间发布的论文的系统文献综述,以确定,分析和分类量子机器学习和其应用中使用的不同算法。因此,该研究确定了使用量子机器学习技术和算法的52篇文章。发现算法的主要类型是经典机器学习算法的量子实现,例如支持向量机或K最近邻模型,以及古典的深度学习算法,如量子神经网络。许多文章试图解决目前通过古典机器学习回答的问题,但使用量子设备和算法。即使结果很有希望,量子机器学习也远未实现其全部潜力。由于现有量子计算机缺乏足够的质量,速度和比例以允许量子计算来实现其全部潜力,因此需要提高量子硬件。
translated by 谷歌翻译
本文旨在研究基于电路的混合量子卷积神经网络(QCNNS)如何在遥感的上下文中成功地在图像分类器中成功使用。通过在标准神经网络内引入量子层来丰富CNN的经典架构。本工作中提出的新型QCNN应用于土地使用和陆地覆盖(LULC)分类,选择为地球观测(EO)用例,并在欧元区数据集上测试用作参考基准。通过证明QCNN性能高于经典对应物,多标量分类的结果证明了所提出的方法的有效性。此外,各种量子电路的研究表明,利用量子纠缠的诸如最佳分类评分。本研究强调了将量子计算应用于EO案例研究的潜在能力,并为期货调查提供了理论和实验背景。
translated by 谷歌翻译
Quantum机器学习目前正在受到极大的关注,但是与实用应用的经典机器学习技术相比,其有用性尚不清楚。但是,有迹象表明,某些量子机学习算法可能会提高其经典同行的培训能力 - 在很少有培训数据的情况下,这在情况下可能特别有益。这种情况自然出现在医学分类任务中。在本文中,提出了不同的杂种量子卷积神经网络(QCCNN),提出了不同的量子电路设计和编码技术。它们应用于二维医学成像数据,例如在计算机断层扫描中具有不同的,潜在的恶性病变。这些QCCNN的性能已经与它们的经典同行之一相似,因此鼓励进一步研究将这些算法应用于医学成像任务的方向。
translated by 谷歌翻译
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
translated by 谷歌翻译
Pennylane是用于量子计算机可区分编程的Python 3软件框架。该库为近期量子计算设备提供了统一的体系结构,支持量子和连续变化的范例。 Pennylane的核心特征是能够以与经典技术(例如反向传播)兼容的方式来计算变异量子电路的梯度。因此,Pennylane扩展了在优化和机器学习中常见的自动分化算法,以包括量子和混合计算。插件系统使该框架与任何基于门的量子模拟器或硬件兼容。我们为硬件提供商提供插件,包括Xanadu Cloud,Amazon Braket和IBM Quantum,允许Pennylane优化在公开访问的量子设备上运行。在古典方面,Pennylane与加速的机器学习库(例如Tensorflow,Pytorch,Jax和Autograd)接口。 Pennylane可用于优化变分的量子本素体,量子近似优化,量子机学习模型和许多其他应用。
translated by 谷歌翻译
Quantum Machine Learning(QML)提供了一种强大的灵活的范式,可用于编程近期量子计算机,具有化学,计量,材料科学,数据科学和数学的应用。这里,一个以参数化量子电路的形式训练ANSATZ,以实现感兴趣的任务。然而,最近出现了挑战表明,由于随机性或硬件噪声引起的平坦训练景观,因此难以训练深度尖锐钽。这激励了我们的工作,在那里我们提出了一种可变的结构方法来构建QML的Ansatzes。我们的方法称为VANS(可变ANSATZ),将一组规则应用于在优化期间以知识的方式在增长和(至关重要的)中删除量子门。因此,VANS非常适合通过保持ANSATZ浅扫描来缓解训练性和与噪声相关的问题。我们在变分量子Eigensolver中使用Vans进行冷凝物质和量子化学应用,并且还在量子自身化学器中进行数据压缩,显示所有情况的成功结果。
translated by 谷歌翻译
自我监督学习的复苏,其中深入学习模型从数据中产生自己的监督信号,承诺可扩展的方式来解决没有人为注释的大量越来越大的现实数据集。然而,这些方法的惊人的计算复杂性使得对于最先进的性能,经典硬件要求表示有关进一步进展的重要瓶颈。在这里,我们采取了了解量子神经网络是否能够满足对更强大的架构的需求并在原则上的原则上测试其有效性的步骤。有趣的是,即使当量子电路被采样,使用等效结构化的经典网络,我们将遵守使用小型量子神经网络的视觉表示的学习的数值优势。此外,我们应用我们的最佳量子模型,以对IBMQ \ _Paris量子计算机进行分类,并发现当前嘈杂的设备可以在下游任务上实现对等效经典模型的平等准确性。
translated by 谷歌翻译
In recent times, Variational Quantum Circuits (VQC) have been widely adopted to different tasks in machine learning such as Combinatorial Optimization and Supervised Learning. With the growing interest, it is pertinent to study the boundaries of the classical simulation of VQCs to effectively benchmark the algorithms. Classically simulating VQCs can also provide the quantum algorithms with a better initialization reducing the amount of quantum resources needed to train the algorithm. This manuscript proposes an algorithm that compresses the quantum state within a circuit using a tensor ring representation which allows for the implementation of VQC based algorithms on a classical simulator at a fraction of the usual storage and computational complexity. Using the tensor ring approximation of the input quantum state, we propose a method that applies the parametrized unitary operations while retaining the low-rank structure of the tensor ring corresponding to the transformed quantum state, providing an exponential improvement of storage and computational time in the number of qubits and layers. This approximation is used to implement the tensor ring VQC for the task of supervised learning on Iris and MNIST datasets to demonstrate the comparable performance as that of the implementations from classical simulator using Matrix Product States.
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
在过去的十年中,机器学习取得了巨大的成功,其应用程序从面部识别到自然语言处理不等。同时,在量子计算领域已经取得了快速的进步,包括开发强大的量子算法和高级量子设备。机器学习与量子物理学之间的相互作用具有将实际应用带给现代社会的有趣潜力。在这里,我们以参数化量子电路的形式关注量子神经网络。我们将主要讨论各种结构和编码量子神经网络的策略,以进行监督学习任务,并利用Yao.jl进行基准测试,这是用朱莉娅语言编写的量子模拟软件包。这些代码是有效的,旨在为科学工作中的初学者提供便利,例如开发强大的变分量子学习模型并协助相应的实验演示。
translated by 谷歌翻译
在这项工作中,我们利用量子深的增强学习作为方法,以在三个模拟的复杂性的模拟环境中为简单的,轮式机器人学习导航任务。我们显示了与经典基线相比,在混合量子古典设置中训练有良好建立的深钢筋学习技术的参数化量子电路的相似性能。据我们所知,这是用于机器人行为的量子机学习(QML)的首次演示。因此,我们将机器人技术建立为QML算法的可行研究领域,此后量子计算和量子机学习是自治机器人技术未来进步的潜在技术。除此之外,我们讨论了当前的方法的限制以及自动机器人量子机学习领域的未来研究方向。
translated by 谷歌翻译
在过去的十年中,机器学习彻底改变了基于视力的质量评估,卷积神经网络(CNN)现在已成为标准。在本文中,我们考虑了该开发中的潜在下一步,并描述了有效地将经典图像数据映射到量子状态并允许可靠的图像分析的Quanvolutional神经网络(QNN)算法。我们实际上演示了如何在计算机视觉中利用量子设备以及如何将量子卷积引入古典CNN中。在处理工业质量控制中的现实世界用例时,我们在Pennylane框架内实施了混合QNN模型,并从经验上观察它,可以使用比经典CNN更少的培训数据实现更好的预测。换句话说,我们从经验上观察到真正的量子优势,对于由于卓越的数据编码而引起的工业应用。
translated by 谷歌翻译
Powerful hardware services and software libraries are vital tools for quickly and affordably designing, testing, and executing quantum algorithms. A robust large-scale study of how the performance of these platforms scales with the number of qubits is key to providing quantum solutions to challenging industry problems. Such an evaluation is difficult owing to the availability and price of physical quantum processing units. This work benchmarks the runtime and accuracy for a representative sample of specialized high-performance simulated and physical quantum processing units. Results show the QMware cloud computing service can reduce the runtime for executing a quantum circuit by up to 78% compared to the next fastest option for algorithms with fewer than 27 qubits. The AWS SV1 simulator offers a runtime advantage for larger circuits, up to the maximum 34 qubits available with SV1. Beyond this limit, QMware provides the ability to execute circuits as large as 40 qubits. Physical quantum devices, such as Rigetti's Aspen-M2, can provide an exponential runtime advantage for circuits with more than 30. However, the high financial cost of physical quantum processing units presents a serious barrier to practical use. Moreover, of the four quantum devices tested, only IonQ's Harmony achieves high fidelity with more than four qubits. This study paves the way to understanding the optimal combination of available software and hardware for executing practical quantum algorithms.
translated by 谷歌翻译
我们展示了一个新的开源软件,用于快速评估量子电路和绝热进化,这充分利用了硬件加速器。越来越多的Quantum Computing兴趣和Quantum硬件设备的最新发展的兴趣激励了新的高级计算工具的开发,其专注于性能和使用简单性。在这项工作中,我们介绍了一种新的Quantum仿真框架,使开发人员能够将硬件或平台实现的所有复杂方面委托给库,以便他们专注于手头的问题和量子算法。该软件采用Scratch设计,使用仿真性能,代码简单和用户友好的界面作为目标目标。它利用了硬件加速,例如多线CPU,单个GPU和多GPU设备。
translated by 谷歌翻译
我们提出了一种新的混合系统,用于通过使用多目标遗传算法在灰度图像上自动生成和训练量子启发的分类器。我们定义一个动态健身函数,以获得最小的电路和最高的观点数据准确性,以确保所提出的技术是可推广且健壮的。我们通过惩罚其外观来最大程度地减少生成电路的复杂性。我们使用二维降低方法减少图像的大小:主成分分析(PCA),该分析(PCA)是为了优化目的而在个体中编码的,以及一个小的卷积自动编码器(CAE)。将这两种方法相互比较,并采用经典的非线性方法来理解其行为,并确保分类能力是由于量子电路而不是用于降低维度的预处理技术引起的。
translated by 谷歌翻译
For a large number of tasks, quantum computing demonstrates the potential for exponential acceleration over classical computing. In the NISQ era, variable-component subcircuits enable applications of quantum computing. To reduce the inherent noise and qubit size limitations of quantum computers, existing research has improved the accuracy and efficiency of Variational Quantum Algorithm (VQA). In this paper, we explore the various ansatz improvement methods for VQAs at the gate level and pulse level, and classify, evaluate and summarize them.
translated by 谷歌翻译
随着受限制的量子计算机逐渐成为现实,寻找有意义的第一应用程序会加剧。在该领域中,较为研究的方法之一是使用一种特殊类型的量子电路(一种所谓的量子神经网络)作为机器学习模型的基础。顾名思义,粗略地说,量子神经网络可以与神经网络发挥相似的作用。但是,专门针对机器学习环境中的应用,对合适的电路体系结构或模型超参数的了解知之甚少。在这项工作中,我们将功能性方差分析框架应用于量子神经网络,以分析哪些超参数对其预测性能最大。我们分析了最常用的量子神经网络架构之一。然后,我们将其应用于OpenML-CC18分类基准中的$ 7 $开源数据集,其功能的数量足够小,足以适合量子硬件,少于$ 20 $ QUBITS。从功能方差分析获得的超参数的排名中检测到了三个主要重要性。我们的实验都证实了预期的模式,并揭示了新的见解。例如,在所有数据集上的边际贡献方面,设定学习率是最关键的超级参数,而所使用的纠缠门的特定选择被认为是最不重要的选择。这项工作介绍了研究量子机学习模型的新方法,并为量子模型选择提供了新的见解。
translated by 谷歌翻译
量子噪声是嘈杂中间级量子(NISQ)计算机中的关键挑战。以前的缓解噪声的工作主要集中在门级或脉冲级噪声自适应编译。然而,有限的研究工作通过使量子电路本身对噪声具有更高的优化级别。我们提出了Quoutumnas,是变分电路和量子位映射的噪声自适应共同搜索的全面框架。变形量子电路是构建QML和量子仿真的有希望的方法。然而,由于大型设计空间和参数训练成本,找到最佳变分电路及其最佳参数是具有挑战性的。我们建议通过引入新的超级速度来解耦电路搜索和参数培训。超电路由多层预定的参数化栅极构成,并通过迭代采样和更新其的参数子集(Subcircuit)训练。它提供了从头开始培训的子通差形性能的准确估计。然后我们执行Subcircuit的演进共同搜索和其量子位映射。使用从超级电路继承的参数和使用真实设备噪声模型进行估计,估计子电路性能。最后,我们执行迭代栅极修剪和FineTuning以去除冗余栅极。在10个量子计算上广泛评估了12个QML和VQE基准,Quoutumnas显着优于基线。对于QML,Quoutumnas是第一个展示超过95%的2级,85%的4级和真实QC的32%的10级分类准确性。与UCCSD相比,它还实现了H2,H2O,LIH,CH4,BEH2上的VQE任务的最低特征值。我们还开源Quantumengine(https://github.com/mit-han-lab/pytorch-quantum),用于快速训练参数化量子电路,以促进未来的研究。
translated by 谷歌翻译
量子计算机是下一代设备,有望执行超出古典计算机范围的计算。实现这一目标的主要方法是通过量子机学习,尤其是量子生成学习。由于量子力学的固有概率性质,因此可以合理地假设量子生成学习模型(QGLM)可能会超过其经典对应物。因此,QGLM正在从量子物理和计算机科学社区中受到越来越多的关注,在这些QGLM中,可以在近期量子机上有效实施各种QGLM,并提出了潜在的计算优势。在本文中,我们从机器学习的角度回顾了QGLM的当前进度。特别是,我们解释了这些QGLM,涵盖了量子电路出生的机器,量子生成的对抗网络,量子玻尔兹曼机器和量子自动编码器,作为经典生成学习模型的量子扩展。在这种情况下,我们探讨了它们的内在关系及其根本差异。我们进一步总结了QGLM在常规机器学习任务和量子物理学中的潜在应用。最后,我们讨论了QGLM的挑战和进一步研究指示。
translated by 谷歌翻译