In the era of noisy intermediate scale quantum devices, variational quantum circuits (VQCs) are currently one of the main strategies for building quantum machine learning models. These models are made up of a quantum part and a classical part. The quantum part is given by a parametrization $U$, which, in general, is obtained from the product of different quantum gates. By its turn, the classical part corresponds to an optimizer that updates the parameters of $U$ in order to minimize a cost function $C$. However, despite the many applications of VQCs, there are still questions to be answered, such as for example: What is the best sequence of gates to be used? How to optimize their parameters? Which cost function to use? How the architecture of the quantum chips influences the final results? In this article, we focus on answering the last question. We will show that, in general, the cost function will tend to a typical average value the closer the parameterization used is from a $2$-design. Therefore, the closer this parameterization is to a $2$-design, the less the result of the quantum neural network model will depend on its parametrization. As a consequence, we can use the own architecture of the quantum chips to defined the VQC parametrization, avoiding the use of additional swap gates and thus diminishing the VQC depth and the associated errors.
translated by 谷歌翻译
We propose a classical-quantum hybrid algorithm for machine learning on near-term quantum processors, which we call quantum circuit learning. A quantum circuit driven by our framework learns a given task by tuning parameters implemented on it. The iterative optimization of the parameters allows us to circumvent the high-depth circuit. Theoretical investigation shows that a quantum circuit can approximate nonlinear functions, which is further confirmed by numerical simulations. Hybridizing a low-depth quantum circuit and a classical computer for machine learning, the proposed framework paves the way toward applications of near-term quantum devices for quantum machine learning.
translated by 谷歌翻译
变异量子算法已被认为是实现有意义的任务(包括机器学习和组合优化)的近期量子优势的领先策略。当应用于涉及经典数据的任务时,这种算法通常从用于数据编码的量子电路开始,然后训练量子神经网络(QNN)以最小化目标函数。尽管已经广泛研究了QNN,以提高这些算法在实际任务上的性能,但系统地了解编码数据对最终性能的影响存在差距。在本文中,我们通过考虑基于参数化量子电路的常见数据编码策略来填补这一空白。我们证明,在合理的假设下,平均编码状态与最大混合状态之间的距离可以明确地相对于编码电路的宽度和深度。该结果特别意味着平均编码状态将以指数速度的深度速度集中在最大混合状态上。这种浓度严重限制了量子分类器的功能,并严格限制了从量子信息的角度来看编码状态的区分性。我们通过在合成和公共数据集上验证这些结果来进一步支持我们的发现。我们的结果突出了机器学习任务中量子数据编码的重要性,并可能阐明未来的编码策略。
translated by 谷歌翻译
使用量子卷积神经网络(QCNN)的机器学习在量子和经典数据分类中都取得了成功。在先前的研究中,在少数参数制度中,在相同的训练条件下,QCNN的分类准确性比其经典对应物具有更高的分类精度。但是,由于量子电路的大小有限,因此很难检查大规模量子模型的一般性能,这可以在不久的将来可靠地实施。我们建议转移学习是在嘈杂的中间量子量子时代利用小QCNN的有效策略。在经典到量词转移学习框架中,QCNN可以通过使用预训练的经典卷积神经网络(CNN)来解决复杂的分类问题,而无需大规模量子电路。我们对QCNN模型进行了数值模拟,并在转移学习下对MNIST数据分类进行了各种量子卷积和汇总操作,其中经典的CNN经过了时尚持续数据的培训。结果表明,在相似的训练条件下,从经典到量子CNN的转移学习比纯粹的经典转移学习模型要好得多。
translated by 谷歌翻译
在通过梯度下降训练过度参数化的模型函数时,有时参数不会显着变化,并且保持接近其初始值。该现象称为懒惰训练,并激发了对模型函数围绕初始参数的线性近似的考虑。在懒惰的制度中,这种线性近似模仿了参数化函数的行为,其相关内核称为切线内核,指定了模型的训练性能。众所周知,在宽度较大的(经典)神经网络的情况下进行懒惰训练。在本文中,我们表明,几何局部参数化量子电路的训练进入了大量Qubits的懒惰制度。更准确地说,我们证明了这种几何局部参数化量子电路的变化速率,以及相关量子模型函数的线性近似的精确度;随着Qubits的数量的增加,这两个边界都趋于零。我们通过数值模拟支持我们的分析结果。
translated by 谷歌翻译
Quantum Machine Learning(QML)提供了一种强大的灵活的范式,可用于编程近期量子计算机,具有化学,计量,材料科学,数据科学和数学的应用。这里,一个以参数化量子电路的形式训练ANSATZ,以实现感兴趣的任务。然而,最近出现了挑战表明,由于随机性或硬件噪声引起的平坦训练景观,因此难以训练深度尖锐钽。这激励了我们的工作,在那里我们提出了一种可变的结构方法来构建QML的Ansatzes。我们的方法称为VANS(可变ANSATZ),将一组规则应用于在优化期间以知识的方式在增长和(至关重要的)中删除量子门。因此,VANS非常适合通过保持ANSATZ浅扫描来缓解训练性和与噪声相关的问题。我们在变分量子Eigensolver中使用Vans进行冷凝物质和量子化学应用,并且还在量子自身化学器中进行数据压缩,显示所有情况的成功结果。
translated by 谷歌翻译
在过去的十年中,机器学习取得了巨大的成功,其应用程序从面部识别到自然语言处理不等。同时,在量子计算领域已经取得了快速的进步,包括开发强大的量子算法和高级量子设备。机器学习与量子物理学之间的相互作用具有将实际应用带给现代社会的有趣潜力。在这里,我们以参数化量子电路的形式关注量子神经网络。我们将主要讨论各种结构和编码量子神经网络的策略,以进行监督学习任务,并利用Yao.jl进行基准测试,这是用朱莉娅语言编写的量子模拟软件包。这些代码是有效的,旨在为科学工作中的初学者提供便利,例如开发强大的变分量子学习模型并协助相应的实验演示。
translated by 谷歌翻译
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years. However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number. This result leads to a general standpoint that deep quantum circuits would not be feasible for practical tasks. In this work, we propose an initialization strategy with theoretical guarantees for the vanishing gradient problem in general deep quantum circuits. Specifically, we prove that under proper Gaussian initialized parameters, the norm of the gradient decays at most polynomially when the qubit number and the circuit depth increase. Our theoretical results hold for both the local and the global observable cases, where the latter was believed to have vanishing gradients even for very shallow circuits. Experimental results verify our theoretical findings in the quantum simulation and quantum chemistry.
translated by 谷歌翻译
预计人工神经网络的领域将强烈受益于量子计算机的最新发展。特别是Quantum Machine Learning,一类利用用于创建可训练神经网络的Qubits的量子算法,将提供更多的力量来解决模式识别,聚类和机器学习等问题。前馈神经网络的构建块由连接到输出神经元的一层神经元组成,该输出神经元根据任意激活函数被激活。相应的学习算法以Rosenblatt Perceptron的名义。具有特定激活功能的量子感知是已知的,但仍然缺乏在量子计算机上实现任意激活功能的一般方法。在这里,我们用量子算法填充这个间隙,该算法能够将任何分析激活功能近似于其功率系列的任何给定顺序。与以前的提案不同,提供不可逆转的测量和简化的激活功能,我们展示了如何将任何分析功能近似于任何所需的准确性,而无需测量编码信息的状态。由于这种结构的一般性,任何前锋神经网络都可以根据Hornik定理获取通用近似性质。我们的结果重新纳入栅极型量子计算机体系结构中的人工神经网络科学。
translated by 谷歌翻译
本文介绍了一个基于量子神经网络的深度学习系统,用于在平面上特定几何模式(两个摩尔分类问题)的点的二进制分类。我们认为,混合深度学习系统(经典 +量子)的使用不仅可以在计算加速度方面带来合理的好处,而且在理解基本现象和机制方面都可以带来好处。这将导致创建新的机器学习形式,以及量子计算世界中的强大发展。所选数据集基于2D二进制分类生成器,该生成器有助于测试特定算法的有效性;它是一组2D点,形成两个散布的半圆。它在二维表示空间中显示了两个分离的数据集:因此,功能是单个点的两个坐标,$ x_1 $和$ x_2 $。目的是产生一个量子深神经网络,其可识别和分类点的可训练参数数量最少。
translated by 谷歌翻译
预计变形量子算法将展示量子计算在近期嘈杂量子计算机上的优点。然而,由于算法的大小增加,训练这种变分量子算法遭受梯度消失。以前的工作无法处理由现实量子硬件的必然噪声效应引起的渐变消失。在本文中,我们提出了一种新颖的培训方案,以减轻这种噪声引起的渐变消失。我们首先介绍一种新的成本函数,其中通过在截断的子空间中使用无意程可观察来显着增强梯度。然后,我们证明可以通过从新的成本函数与梯度优化原始成本函数来达到相同的最小值。实验表明,我们的新培训方案对于各种任务的主要变分量子算法非常有效。
translated by 谷歌翻译
随着受限制的量子计算机逐渐成为现实,寻找有意义的第一应用程序会加剧。在该领域中,较为研究的方法之一是使用一种特殊类型的量子电路(一种所谓的量子神经网络)作为机器学习模型的基础。顾名思义,粗略地说,量子神经网络可以与神经网络发挥相似的作用。但是,专门针对机器学习环境中的应用,对合适的电路体系结构或模型超参数的了解知之甚少。在这项工作中,我们将功能性方差分析框架应用于量子神经网络,以分析哪些超参数对其预测性能最大。我们分析了最常用的量子神经网络架构之一。然后,我们将其应用于OpenML-CC18分类基准中的$ 7 $开源数据集,其功能的数量足够小,足以适合量子硬件,少于$ 20 $ QUBITS。从功能方差分析获得的超参数的排名中检测到了三个主要重要性。我们的实验都证实了预期的模式,并揭示了新的见解。例如,在所有数据集上的边际贡献方面,设定学习率是最关键的超级参数,而所使用的纠缠门的特定选择被认为是最不重要的选择。这项工作介绍了研究量子机学习模型的新方法,并为量子模型选择提供了新的见解。
translated by 谷歌翻译
Quantum machine learning has become an area of growing interest but has certain theoretical and hardware-specific limitations. Notably, the problem of vanishing gradients, or barren plateaus, renders the training impossible for circuits with high qubit counts, imposing a limit on the number of qubits that data scientists can use for solving problems. Independently, angle-embedded supervised quantum neural networks were shown to produce truncated Fourier series with a degree directly dependent on two factors: the depth of the encoding, and the number of parallel qubits the encoding is applied to. The degree of the Fourier series limits the model expressivity. This work introduces two new architectures whose Fourier degrees grow exponentially: the sequential and parallel exponential quantum machine learning architectures. This is done by efficiently using the available Hilbert space when encoding, increasing the expressivity of the quantum encoding. Therefore, the exponential growth allows staying at the low-qubit limit to create highly expressive circuits avoiding barren plateaus. Practically, parallel exponential architecture was shown to outperform the existing linear architectures by reducing their final mean square error value by up to 44.7% in a one-dimensional test problem. Furthermore, the feasibility of this technique was also shown on a trapped ion quantum processing unit.
translated by 谷歌翻译
作为量子优势的应用,对动态模拟和量子机学习(QML)的关注很大,而使用QML来增强动态模拟的可能性尚未得到彻底研究。在这里,我们开发了一个框架,用于使用QML方法模拟近期量子硬件上的量子动力学。我们使用概括范围,即机器学习模型在看不见的数据上遇到的错误,以严格分析此框架内算法的训练数据要求。这提供了一种保证,就量子和数据要求而言,我们的算法是资源有效的。我们的数字具有问题大小的有效缩放,我们模拟了IBMQ-Bogota上的Trotterization的20倍。
translated by 谷歌翻译
本文旨在研究基于电路的混合量子卷积神经网络(QCNNS)如何在遥感的上下文中成功地在图像分类器中成功使用。通过在标准神经网络内引入量子层来丰富CNN的经典架构。本工作中提出的新型QCNN应用于土地使用和陆地覆盖(LULC)分类,选择为地球观测(EO)用例,并在欧元区数据集上测试用作参考基准。通过证明QCNN性能高于经典对应物,多标量分类的结果证明了所提出的方法的有效性。此外,各种量子电路的研究表明,利用量子纠缠的诸如最佳分类评分。本研究强调了将量子计算应用于EO案例研究的潜在能力,并为期货调查提供了理论和实验背景。
translated by 谷歌翻译
高品质,大型数据集在古典机器学习的发展和成功中发挥了至关重要的作用。量子机器学习(QML)是一个新的领域,旨在使用量子计算机进行数据分析,希望获得某种量子的量子优势。虽然大多数提议的QML架构是使用经典数据集的基准测试,但仍存在古典数据集上的QML是否会实现这样的优势。在这项工作中,我们争辩说,应该使用由量子状态组成的量子数据集。为此目的,我们介绍了由量子状态组成的Ntangled DataSet,其数量和多分纠缠的类型。我们首先展示如何培训量子神经网络,以在Ntangled DataSet中生成状态。然后,我们使用Ntangled DataSet来获得用于监督学习分类任务的基准测试QML模型。我们还考虑一个基于替代的纠缠基数据集,其是可扩展的,并且由量子电路准备的状态与不同深度的状态组成。作为我们的结果的副产品,我们介绍了一种用于产生多重石纠缠态的新方法,为量子纠缠理论提供量子神经网络的用例。
translated by 谷歌翻译
对机器学习模型训练的栅极基量子电路的发展越来越兴趣。然而,关于电路设计的参数,噪声和其他测量误差对量子机器学习模型性能的影响很少。在本文中,我们探讨了使用多个标准机器学习数据集和IBM的Qiskit模拟器的关键电路设计参数(Qubits,Deposit等)的实际意义。总的来,我们评估超过6500个独特电路,以$ n \约120700美元。我们发现,一般浅(低深度)宽(更多Qubits)电路拓扑倾向于在没有噪声的情况下更优于更深的内容。我们还探讨了不同噪声概念的影响和影响,并讨论了对分类机学习任务的噪声更多/较低的电路拓扑。基于该研究结果,我们定义了使用基于门的NISQ量子计算机来实现近期承诺的电路拓扑指南。
translated by 谷歌翻译
深度学习是当今机器学习中最成功和最深远的策略之一。然而,神经网络的规模和效用仍然受到用于训练它们的当前硬件的极大限制。随着常规电脑快速接近将在未来几年的情况下,常规计算机迅速接近物理限制,这些问题越来越紧。由于这些原因,科学家们已经开始探索替代计算平台,如量子计算机,用于训练神经网络。近年来,变分量子电路已成为在嘈杂的中间秤量子器件上量子深度学习的最成功的方法之一。我们提出了一种混合量子古典神经网络架构,其中每个神经元是变形量子电路。我们使用模拟通用量子计算机和艺术通用量子计算机的状态来统一地分析该混合神经网络对一系列二元分类数据集的性能。在模拟硬件上,我们观察到混合神经网络的分类精度高出10%,比各个变分量子电路更好地最小化了20%。在Quantum硬件上,我们观察到每个模型仅在Qubit和栅极计数足够小时执行良好。
translated by 谷歌翻译
在量子计算中,变分量子算法(VQAS)非常适合于在从化学中寻找特定应用中的物品的最佳组合一切融资。具有梯度下降优化算法的VQA的训练显示出良好的收敛性。在早期阶段,在嘈杂的中间级量子(NISQ)器件上的变分量子电路的模拟遭受了嘈杂的输出。就像古典深度学习一样,它也遭受了消失的渐变问题。研究损失景观的拓扑结构是一种逼真的目标,以在消失梯度存在的存在下可视化这些电路的曲率信息和可训练。在本文中,我们计算了Hessian,并在参数空间中的不同点处可视化变分量子分类器的损失景观。解释变分量子分类器(VQC)的曲率信息,并显示了损耗函数的收敛。它有助于我们更好地了解变形量子电路的行为,以有效地解决优化问题。我们通过Hessian在量子计算机上调查了变形量子分类器,从一个简单的4位奇偶校验问题开始,以获得对黑森州的实际行为的洞察力,然后彻底分析了Hessian的特征值对培训糖尿病数据集的变分量子分类器的行为。最后,我们展示了自适应Hessian学习率如何在训练变分电路时影响收敛。
translated by 谷歌翻译
量子计算机对机器学习应用程序保持前所未有的潜力。在这里,我们证明了物理量子电路通过经验风险最小化在量子计算机上可读的PAC(可能近似正确):以最多为最多$ N ^ C $栅极的参数量子电路,每个门作用于恒定数量的Qubits,样本复杂度被$ \ tilde {o}界限为(n ^ {c + 1})$。特别是,我们明确地构建了一种以固定模式排列的$ O(n ^ {c + 1})$ o(n ^ {c + 1})的变形量子电路系列,其可以代表最多$ n ^ c $基本的所有物理量子电路盖茨。我们的结果为大量机器学习提供了一个有价值的理论和实践。
translated by 谷歌翻译