对于任何给定的预测任务,可能存在多个模型几乎同样出色的模型。我们研究了这些竞争模型的预测如何变化。特别是,我们研究了概率分类的预测性多样性。我们正式定义了我们的设置措施,并开发基于优化的方法来计算这些措施,以实现经验风险最小化问题。我们运用我们的方法来深入了解为什么出现预测性多样性。我们证明了在现实世界风险评估任务中预测多样性的发生率和流行率。我们的结果强调需要更广泛地报告多重性。
translated by 谷歌翻译
清单是简单的决策辅助工具,通常用于促进临床应用中的安全性和可靠性。在本文中,我们提出了一种学习临床决策支持清单的方法。我们代表预测检查表作为具有二进制特征和单位权重的离散线性分类器。然后,我们通过解决整数编程问题,从数据中了解全局最佳预测检查表。我们的方法允许用户自定义检查表以遵循复杂的约束,包括对实施组公平性的约束,并在培训时间进行二共度实际功能。此外,它对具有最优性差距的模型,可以为模型开发提供信息,并确定在给定数据集上的充分准确检查表的可行性。我们将我们的方法与专业技术配对,加速其培训能够良好的预测检查表的能力,并且具有小的最优性差距。我们在七个临床分类问题上基准测试我们的方法,并通过培训用于接触前置筛查的短型清单来展示其实用益处。我们的结果表明,我们的方法可以适用于简单的预测检查表,可以很好地表现良好,可以轻松定制,以遵守丰富的自定义约束。
translated by 谷歌翻译
目的:我们研究使用机器学习(ML)模型的可解释的累入预测,并在预测能力,稀疏性和公平性方面分析性能。与以前的作品不同,本研究列举了输出概率而不是二进制预测的可解释模型,并使用定量公平定义来评估模型。本研究还研究了模型是否可以横跨地理位置概括。方法:我们在佛罗里达州和肯塔基州的两个不同的刑事核查数据集上生成了黑盒和可解释的ML模型。我们将这些模型的预测性能和公平与目前用于司法系统中使用的两种方法进行了比较,以预测审前常规率:Arnold PSA和Compas。我们评估了所有模型的预测性能,可以在两次跨越两次预测六种不同类型犯罪的模型。结果:几种可解释的ML模型可以预测常规和黑盒ML模型,比Compas或Arnold PSA更准确。这些模型在实践中可能有用。类似于Arnold PSA,这些可解释模型中的一些可以作为一个简单的表格写入。其他可以使用一组可视化显示。我们的地理分析表明ML模型应分开培训,以便单独的位置并随时间更新。我们还为可​​解释模型提供了公平分析。结论:可解释的机器学习模型可以在预测准确性和公平性方面表现,也可以表现,也可以表现,也可以执行不可解释的方法和目前使用的风险评估尺度。机器学习模型对于单独培训,可以更准确地进行不同的位置,并保持最新。
translated by 谷歌翻译
公平的机器学习研究人员(ML)围绕几个公平标准结合,这些标准为ML模型公平提供了正式的定义。但是,这些标准有一些严重的局限性。我们确定了这些正式公平标准的四个主要缺点,并旨在通过扩展性能预测以包含分配强大的目标来帮助解决这些问题。
translated by 谷歌翻译
本文介绍了分类器校准原理和实践的简介和详细概述。校准的分类器正确地量化了与其实例明智的预测相关的不确定性或信心水平。这对于关键应用,最佳决策,成本敏感的分类以及某些类型的上下文变化至关重要。校准研究具有丰富的历史,其中几十年来预测机器学习作为学术领域的诞生。然而,校准兴趣的最近增加导致了新的方法和从二进制到多种子体设置的扩展。需要考虑的选项和问题的空间很大,并导航它需要正确的概念和工具集。我们提供了主要概念和方法的介绍性材料和最新的技术细节,包括适当的评分规则和其他评估指标,可视化方法,全面陈述二进制和多字数分类的HOC校准方法,以及几个先进的话题。
translated by 谷歌翻译
分析分类模型性能对于机器学习从业人员来说是一项至关重要的任务。尽管从业者经常使用从混乱矩阵中得出的基于计数的指标,例如准确性,许多应用程序,例如天气预测,体育博彩或患者风险预测,但依赖分类器的预测概率而不是预测标签。在这些情况下,从业者关注的是产生校准模型,即输出反映真实分布的模型的模型。通常通过静态可靠性图在视觉上分析模型校准,但是,由于所需的强大聚合,传统的校准可视化可能会遭受各种缺陷。此外,基于计数的方法无法充分分析模型校准。我们提出校准,这是一个解决上述问题的交互性可靠性图。校准构造一个可靠性图,该图表可抵抗传统方法中的缺点,并允许进行交互式子组分析和实例级检查。我们通过在现实世界和合成数据上的用例中证明了校准的实用性。我们通过与常规分析模型校准的数据科学家进行思考实验的结果来进一步验证校准。
translated by 谷歌翻译
我们在分类的背景下研究公平,其中在接收器的曲线下的区域(AUC)下的区域测量的性能。当I型(误报)和II型(假阴性)错误都很重要时,通常使用AUC。然而,相同的分类器可以针对不同的保护组具有显着变化的AUC,并且在现实世界中,通常希望减少这种交叉组差异。我们解决如何选择其他功能,以便最大地改善弱势群体的AUC。我们的结果表明,功能的无条件方差不会通知我们关于AUC公平,而是类条件方差。使用此连接,我们基于功能增强(添加功能)来开发一种新颖的方法Fairauc,以减轻可识别组之间的偏差。我们评估综合性和现实世界(Compas)数据集的Fairauc,并发现它对于相对于基准,最大限度地提高了总体AUC并最大限度地减少了组之间的偏见的基准,它显着改善了弱势群体的AUC。
translated by 谷歌翻译
算法追索权旨在推荐提供丰富的反馈,以推翻不利的机器学习决策。我们在本文中介绍了贝叶斯追索权,这是一种模型不足的追索权,可最大程度地减少后验概率比值比。此外,我们介绍了其最小的稳健对应物,目的是对抗机器学习模型参数的未来变化。强大的对应物明确考虑了使用最佳传输(Wasserstein)距离规定的高斯混合物中数据的扰动。我们表明,可以将最终的最差目标函数分解为求解一系列二维优化子问题,因此,最小值追索问题发现问题可用于梯度下降算法。与现有的生成健壮的回流的方法相反,可靠的贝叶斯追索不需要线性近似步骤。数值实验证明了我们提出的稳健贝叶斯追索权面临模型转移的有效性。我们的代码可在https://github.com/vinairesearch/robust-bayesian-recourse上找到。
translated by 谷歌翻译
最近的作品揭示了设计损失功能的基本范式,该损失功能与骨料损失不同。单个损失衡量样本上模型的质量,而总损失结合了每个训练样本的个体损失/分数。两者都有一个共同的过程,将一组单个值集合到单个数值值。排名顺序反映了设计损失时个人价值观之间最基本的关系。此外,可以将损失分解成单个术语的合奏的可分解性成为组织损失/得分的重要特性。这项调查对机器学习中的基于等级的可分解损失进行了系统的全面审查。具体而言,我们提供了损失功能的新分类法,遵循总损失和个人损失的观点。我们确定聚合器以形成此类损失,这是集合功能的示例。我们将基于等级的分解损失组织为八类。遵循这些类别,我们回顾有关基于等级的总损失和基于等级的个人损失的文献。我们描述了这些损失的一般公式,并将其与现有的研究主题联系起来。我们还建议未来的研究方向涵盖基于等级的可分解损失的未开发,剩余和新兴问题。
translated by 谷歌翻译
我们考虑在有限数据设置下一般损失函数下线性分类问题。过度装备是这里的常见问题。防止过度装备的标准方法是减少和正则化的维度。但是减少了维度的丢失信息,而正规化要求用户选择规范,或之前或距离度量。我们提出了一种称为Rolin的算法,不需要用户选择并适用于大类丢失功能。 Rolin将顶部主成分的可靠信息与强大的优化组合,以从不可靠的子空间中提取任何有用的信息。它还包括一种新的强大交叉验证,比有限数据设置中的现有交叉验证方法更好。在$ 25 $现实世界数据集和三个标准损失功能的实验表明,Rolin广泛优于维度,减少和正规。与Rolin相比,维数减少有14 \% - 40 \%$较差的测试损失。防止$ L_1 $和$ L_2 $正则化,Rolin可以更好地为3倍,对于平方铰链损耗更好的逻辑损耗和12倍。对于小型样本尺寸,差异最大,其中Rolin实现了比任何竞争方法更多的数据集的2倍至3x的最佳损失。对于某些数据集,Rolin以$ 15 $培训样本比为1500美元的最佳规范正常化更好。
translated by 谷歌翻译
作为一种预测模型的评分系统具有可解释性和透明度的显着优势,并有助于快速决策。因此,评分系统已广泛用于各种行业,如医疗保健和刑事司法。然而,这些模型中的公平问题长期以来一直受到批评,并且使用大数据和机器学习算法在评分系统的构建中提高了这个问题。在本文中,我们提出了一般框架来创建公平知识,数据驱动评分系统。首先,我们开发一个社会福利功能,融入了效率和群体公平。然后,我们将社会福利最大化问题转换为机器学习中的风险最小化任务,并在混合整数编程的帮助下导出了公平感知评分系统。最后,导出了几种理论界限用于提供参数选择建议。我们拟议的框架提供了适当的解决方案,以解决进程中的分组公平问题。它使政策制定者能够设置和定制其所需的公平要求以及其他特定于应用程序的约束。我们用几个经验数据集测试所提出的算法。实验证据支持拟议的评分制度在实现利益攸关方的最佳福利以及平衡可解释性,公平性和效率的需求方面的有效性。
translated by 谷歌翻译
我们建议社会福利优化作为在AI系统中正式化公平性的一般范式。我们认为,优化模型允许将广泛的公平标准作为社会福利功能,同时使AI充分利用高级的解决方案技术。与其试图减少选定群体之间的偏见,不如将公平性纳入社会福利职能来实现所有群体。这也允许对所涉个人的福利进行更全面的会计。我们展示了如何使用内部处理或后处理方法将社会福利优化与基于规则的AI和机器学习集成在一起。我们提出了案例研究的经验结果,作为对这些整合策略的有效性和潜力的初步研究。
translated by 谷歌翻译
在许多现实世界和高影响力决策设置中,从分类过程中说明预测性不确定性的神经网络的概率预测至关重要。但是,实际上,大多数数据集经过非稳定神经网络的培训,默认情况下,这些神经网络不会捕获这种固有的不确定性。这个众所周知的问题导致了事后校准程序的开发,例如PLATT缩放(Logistic),等渗和β校准,这将得分转化为校准良好的经验概率。校准方法的合理替代方法是使用贝叶斯神经网络,该网络直接建模预测分布。尽管它们已应用于图像和文本数据集,但在表格和小型数据制度中的采用有限。在本文中,我们证明了与校准神经网络相比,贝叶斯神经网络在各种数据集中进行实验,从而产生竞争性能。
translated by 谷歌翻译
公平定理是算法公平文献中的基本结果。它指出,在特殊情况之外,人们不能准确和同时满足公平性的所有三个共同和直观的定义 - 人口统计学奇偶,均衡的赔率和预测率的均等。这一结果促使大多数作品专注于一个或两个指标的解决方案。与其效仿,在本文中,我们提出了一个框架,该框架可以推动不可能定理的限制,以便尽可能地满足所有三个指标。我们开发了一种基于整数编程的方法,该方法可以产生一种认证的最佳后处理方法,以同时满足小违规情况下的多重公平标准。我们显示的实验表明,我们的后处理器可以同时降低模型性能的同时提高不同定义的公平性。我们还讨论了我们在模型选择和公平性解释性方面的应用程序,从而试图回答以下问题:谁是最公平的?
translated by 谷歌翻译
机器学习(ML)越来越多地用于支持高风险的决策,这是由于其相对于人类评估的优势预测能力的承诺而欠的趋势。但是,决策目标与观察到的作为训练ML模型的标签的结果中捕获的内容之间经常存在差距。结果,机器学习模型可能无法捕获决策标准的重要维度,从而阻碍了他们的决策支持。在这项工作中,我们探讨了历史专家决策作为组织信息系统中通常可用的丰富(但不完美)的信息来源,并表明它可以利用它来弥合决策目标与算法目标之间的差距。当数据中的每个案例都由单个专家评估并提出基于影响函数的方法作为解决此问题的解决方案时,我们会间接考虑估计专家一致性的问题。然后,我们将估计的专家一致性通过培训时间标签合并方法纳入预测模型。这种方法使ML模型可以在有推断的专家一致性和观察标签的情况下向专家学习。我们还提出了通过混合和延期模型来利用推断一致性的替代方法。在我们的经验评估中,专注于儿童虐待热线筛查的背景下,我们表明(1)有一些高风险案例,其风险是专家考虑的,但在目标标签中没有完全捕获用于培训已部署模型和培训的目标标签(2)提出的方法可显着提高这些情况的精度。
translated by 谷歌翻译
本文解决了在水模型部署民主化中采用了机器学习的一些挑战。第一个挑战是减少了在主动学习的帮助下减少了标签努力(因此关注数据质量),模型推断与Oracle之间的反馈循环:如在保险中,未标记的数据通常丰富,主动学习可能会成为一个重要的资产减少标签成本。为此目的,本文在研究其对合成和真实数据集的实证影响之前,阐述了各种古典主动学习方法。保险中的另一个关键挑战是模型推论中的公平问题。我们将在此主动学习框架中介绍和整合一个用于多级任务的后处理公平,以解决这两个问题。最后对不公平数据集的数值实验突出显示所提出的设置在模型精度和公平性之间存在良好的折衷。
translated by 谷歌翻译
由于大多数入院的患者生存,因此感兴趣的医疗事件(例如死亡率)通常以较低的速度发生。具有这种不平衡率(类密度差异)的训练模型可能会导致次优预测。传统上,这个问题是通过临时方法(例如重新采样或重新加权)来解决的,但在许多情况下的性能仍然有限。我们为此不平衡问题提出了一个培训模型的框架:1)我们首先将特征提取和分类过程分离,分别调整每个组件的训练批次,以减轻由类密度差异引起的偏差;2)我们既有密度感知的损失,又是错误分类的可学习成本矩阵。我们证明了模型在现实世界医学数据集(TOPCAT和MIMIC-III)中的改进性能,以显示与域中的基线相比,AUC-ROC,AUC-PRC,BRIER技能得分的改进。
translated by 谷歌翻译
当疑问以获得更好的有效精度时,选择性分类允许模型放弃预测(例如,说“我不知道”)。尽管典型的选择性模型平均可以有效地产生更准确的预测,但它们仍可能允许具有很高置信度的错误预测,或者跳过置信度较低的正确预测。提供校准的不确定性估计以及预测(与真实频率相对应的概率)以及具有平均准确的预测一样重要。但是,不确定性估计对于某些输入可能不可靠。在本文中,我们开发了一种新的选择性分类方法,其中我们提出了一种拒绝“不确定”不确定性的示例的方法。通过这样做,我们旨在通过对所接受示例的分布进行{良好校准}的不确定性估计进行预测,这是我们称为选择性校准的属性。我们提出了一个用于学习选择性校准模型的框架,其中训练了单独的选择器网络以改善给定基本模型的选择性校准误差。特别是,我们的工作重点是实现强大的校准,该校准有意地设计为在室外数据上进行测试。我们通过受分配强大的优化启发的训练策略实现了这一目标,在该策略中,我们将模拟输入扰动应用于已知的,内域培训数据。我们证明了方法对多个图像分类和肺癌风险评估任务的经验有效性。
translated by 谷歌翻译
The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often referred to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of attempts so far at handling uncertainty in general and formalizing this distinction in particular.
translated by 谷歌翻译
多标签分类器估计每一组概念标签的二进制标签状态(相关与无关),对于任何给定的实例。概率多标签分类器在此类标签状态(标签的幂列)的所有可能的标签组组合(标签的功能)的所有可能的标签集组合中提供了预测性的后验分布,我们可以通过选择对应于该分布的最大预期准确性的标签集,从而提供最佳的估计值。例如,在最大化精确匹配精度时,我们提供了分布的模式。但是,这与我们在这样的估计中可能拥有的信心有何关系?置信度是多标签分类器(通常在机器学习中)现实世界应用的重要组成部分,并且是解释性和解释性的重要组成部分。但是,如何在多标签上下文中提供信心并与特定准确度量有关,也不清楚如何提供与预期准确性良好相关的信心,这在现实中最有价值 - 世界决策。在本文中,我们将预期准确性视为具有给定精度度量的信心的替代品。我们假设可以从多标签预测分布中估算预期精度。我们检查了七个候选功能,以估计预测分布的预期准确性的能力。我们发现其中三个与预期准确性相关,并且具有稳健性。此外,我们确定可以单独使用每个候选功能来估计锤击相似性,但是候选者的组合最适合预期的jaccard索引和精确匹配。
translated by 谷歌翻译