算法追索权旨在推荐提供丰富的反馈,以推翻不利的机器学习决策。我们在本文中介绍了贝叶斯追索权,这是一种模型不足的追索权,可最大程度地减少后验概率比值比。此外,我们介绍了其最小的稳健对应物,目的是对抗机器学习模型参数的未来变化。强大的对应物明确考虑了使用最佳传输(Wasserstein)距离规定的高斯混合物中数据的扰动。我们表明,可以将最终的最差目标函数分解为求解一系列二维优化子问题,因此,最小值追索问题发现问题可用于梯度下降算法。与现有的生成健壮的回流的方法相反,可靠的贝叶斯追索不需要线性近似步骤。数值实验证明了我们提出的稳健贝叶斯追索权面临模型转移的有效性。我们的代码可在https://github.com/vinairesearch/robust-bayesian-recourse上找到。
translated by 谷歌翻译
We study distributionally robust optimization (DRO) with Sinkhorn distance -- a variant of Wasserstein distance based on entropic regularization. We provide convex programming dual reformulation for a general nominal distribution. Compared with Wasserstein DRO, it is computationally tractable for a larger class of loss functions, and its worst-case distribution is more reasonable. We propose an efficient first-order algorithm with bisection search to solve the dual reformulation. We demonstrate that our proposed algorithm finds $\delta$-optimal solution of the new DRO formulation with computation cost $\tilde{O}(\delta^{-3})$ and memory cost $\tilde{O}(\delta^{-2})$, and the computation cost further improves to $\tilde{O}(\delta^{-2})$ when the loss function is smooth. Finally, we provide various numerical examples using both synthetic and real data to demonstrate its competitive performance and light computational speed.
translated by 谷歌翻译
我们提出了一个数据驱动的投资组合选择模型,该模型使用分布稳健优化的框架来整合侧面信息,条件估计和鲁棒性。投资组合经理在观察到的侧面信息上进行条件解决了一个分配问题,该问题可最大程度地减少最坏情况下的风险回收权衡权衡,但要受到最佳运输歧义集中协变量返回概率分布的所有可能扰动。尽管目标函数在概率措施中的非线性性质非线性,但我们表明,具有侧面信息问题的分布稳健的投资组合分配可以作为有限维优化问题进行重新纠正。如果基于均值变化或均值的风险标准做出投资组合的决策,则可以进一步简化所得的重新制定为二阶或半明确锥体程序。美国股票市场的实证研究证明了我们对其他基准的综合框架的优势。
translated by 谷歌翻译
我们研究了基于分布强大的机会约束的对抗性分类模型。我们表明,在Wasserstein模糊性下,该模型旨在最大限度地减少距离分类距离的条件值 - 风险,并且我们探讨了前面提出的对抗性分类模型和最大限度的分类机的链接。我们还提供了用于线性分类的分布鲁棒模型的重构,并且表明它相当于最小化正则化斜坡损失目标。数值实验表明,尽管这种配方的非凸起,但是标准的下降方法似乎会聚到全球最小值器。灵感来自这种观察,我们表明,对于某一类分布,正则化斜坡损失最小化问题的唯一静止点是全球最小化器。
translated by 谷歌翻译
使用历史观察数据的政策学习是发现广泛应用程序的重要问题。示例包括选择优惠,价格,要发送给客户的广告,以及选择要开出患者的药物。但是,现有的文献取决于这样一个关键假设,即将在未来部署学习策略的未来环境与生成数据的过去环境相同 - 这个假设通常是错误或太粗糙的近似值。在本文中,我们提高了这一假设,并旨在通过不完整的观察数据来学习一项稳健的策略。我们首先提出了一个政策评估程序,该程序使我们能够评估政策在最坏情况下的转变下的表现。然后,我们为此建议的政策评估计划建立了中心限制定理类型保证。利用这种评估方案,我们进一步提出了一种新颖的学习算法,该算法能够学习一项对对抗性扰动和未知协变量转移的策略,并根据统一收敛理论的性能保证进行了绩效保证。最后,我们从经验上测试了合成数据集中提出的算法的有效性,并证明它提供了使用标准策略学习算法缺失的鲁棒性。我们通过在现实世界投票数据集的背景下提供了我们方法的全面应用来结束本文。
translated by 谷歌翻译
比较概率分布是许多机器学习算法的关键。最大平均差异(MMD)和最佳运输距离(OT)是在过去几年吸引丰富的关注的概率措施之间的两类距离。本文建立了一些条件,可以通过MMD规范控制Wassersein距离。我们的作品受到压缩统计学习(CSL)理论的推动,资源有效的大规模学习的一般框架,其中训练数据总结在单个向量(称为草图)中,该训练数据捕获与所考虑的学习任务相关的信息。在CSL中的现有结果启发,我们介绍了H \“较旧的较低限制的等距属性(H \”较旧的LRIP)并表明这家属性具有有趣的保证对压缩统计学习。基于MMD与Wassersein距离之间的关系,我们通过引入和研究学习任务的Wassersein可读性的概念来提供压缩统计学习的保证,即概率分布之间的某些特定于特定的特定度量,可以由Wassersein界定距离。
translated by 谷歌翻译
Wasserstein的分布在强大的优化方面已成为强大估计的有力框架,享受良好的样本外部性能保证,良好的正则化效果以及计算上可易处理的双重重新纠正。在这样的框架中,通过将最接近经验分布的所有概率分布中最接近的所有概率分布中最小化的最差预期损失来最大程度地减少估计量。在本文中,我们提出了一个在噪声线性测量中估算未知参数的Wasserstein分布稳定的M估计框架,我们专注于分析此类估计器的平方误差性能的重要且具有挑战性的任务。我们的研究是在现代的高维比例状态下进行的,在该状态下,环境维度和样品数量都以相对的速度进行编码,该速率以编码问题的下/过度参数化的比例。在各向同性高斯特征假设下,我们表明可以恢复平方误差作为凸 - 串联优化问题的解,令人惊讶的是,它在最多四个标量变量中都涉及。据我们所知,这是在Wasserstein分布强劲的M估计背景下研究此问题的第一项工作。
translated by 谷歌翻译
本文介绍了一种新的基于仿真的推理程序,以对访问I.I.D. \ samples的多维概率分布进行建模和样本,从而规避明确建模密度函数或设计Markov Chain Monte Carlo的通常方法。我们提出了一个称为可逆的Gromov-monge(RGM)距离的新概念的距离和同构的动机,并研究了RGM如何用于设计新的转换样本,以执行基于模拟的推断。我们的RGM采样器还可以估计两个异质度量度量空间之间的最佳对齐$(\ cx,\ mu,c _ {\ cx})$和$(\ cy,\ cy,\ nu,c _ {\ cy})$从经验数据集中,估计的地图大约将一个量度$ \ mu $推向另一个$ \ nu $,反之亦然。我们研究了RGM距离的分析特性,并在轻度条件下得出RGM等于经典的Gromov-Wasserstein距离。奇怪的是,与Brenier的两极分解结合了连接,我们表明RGM采样器以$ C _ {\ cx} $和$ C _ {\ cy} $的正确选择诱导了强度同构的偏见。研究了有关诱导采样器的收敛,表示和优化问题的统计率。还展示了展示RGM采样器有效性的合成和现实示例。
translated by 谷歌翻译
尽管现代的大规模数据集通常由异质亚群(例如,多个人口统计组或多个文本语料库)组成 - 最小化平均损失的标准实践并不能保证所有亚人群中均匀的低损失。我们提出了一个凸面程序,该过程控制给定尺寸的所有亚群中最差的表现。我们的程序包括有限样本(非参数)收敛的保证,可以保证最坏的亚群。从经验上讲,我们观察到词汇相似性,葡萄酒质量和累犯预测任务,我们最糟糕的程序学习了对不看到看不见的亚人群的模型。
translated by 谷歌翻译
成功的深度学习模型往往涉及培训具有比训练样本数量更多的参数的神经网络架构。近年来已经广泛研究了这种超分子化的模型,并且通过双下降现象和通过优化景观的结构特性,从统计的角度和计算视角都建立了过分统计化的优点。尽管在过上分层的制度中深入学习架构的显着成功,但也众所周知,这些模型对其投入中的小对抗扰动感到高度脆弱。即使在普遍培训的情况下,它们在扰动输入(鲁棒泛化)上的性能也会比良性输入(标准概括)的最佳可达到的性能更糟糕。因此,必须了解如何从根本上影响稳健性的情况下如何影响鲁棒性。在本文中,我们将通过专注于随机特征回归模型(具有随机第一层权重的两层神经网络)来提供超分度化对鲁棒性的作用的精确表征。我们考虑一个制度,其中样本量,输入维度和参数的数量彼此成比例地生长,并且当模型发生前列地训练时,可以为鲁棒泛化误差导出渐近精确的公式。我们的发达理论揭示了过分统计化对鲁棒性的非竞争效果,表明对于普遍训练的随机特征模型,高度公正化可能会损害鲁棒泛化。
translated by 谷歌翻译
以良好的样本外观的方式设计用于机器学习和决策的数据驱动配方是一个关键挑战。良好的样本性能并不能保证良好的样本外部性能通常被称为过度拟合的观察结果。实际过度拟合通常不能归因于一个原因,而是一次由几个因素引起的。我们在这里考虑三个过度拟合来源:(i)使用有限样本数据的统计误差,(ii)仅在数据点仅以有限的精度测量数据点时发生的数据噪声,最后(iii)数据错误指定,其中a误解所有数据中的一小部分可能会完全损坏。我们认为,尽管现有的数据驱动的配方可能会孤立地对这三个来源之一,但它们并不能同时对所有过度拟合来源提供全面的保护。我们设计了一种新型的数据驱动公式,它确实可以保证这种整体保护,并且在计算上也可行。我们的分布在强大的优化配方中可以解释为kullback-leibler和Levy-Prokhorov强大优化配方的新型组合。最后,我们展示了在分类和回归问题的背景下,几种受欢迎的正则化和健壮的配方如何减少到我们提出的更通用的配方的特定情况下。
translated by 谷歌翻译
我们在非参数二进制分类的一个对抗性训练问题之间建立了等价性,以及规范器是非识别范围功能的正则化风险最小化问题。由此产生的正常风险最小化问题允许在图像分析和基于图形学习中常常研究的$ L ^ 1 + $(非本地)$ \ Operatorvers {TV} $的精确凸松弛。这种重构揭示了丰富的几何结构,这反过来允许我们建立原始问题的最佳解决方案的一系列性能,包括存在最小和最大解决方案(以合适的意义解释),以及常规解决方案的存在(也以合适的意义解释)。此外,我们突出了对抗性训练和周长最小化问题的联系如何为涉及周边/总变化的正规风险最小化问题提供一种新颖的直接可解释的统计动机。我们的大部分理论结果与用于定义对抗性攻击的距离无关。
translated by 谷歌翻译
生成的对策网络是一种流行的方法,用于通过根据已知分发的函数来建立目标分布来从数据学习分布的流行方法。经常被称为发电机的功能优化,以最小化所生成和目标分布之间的所选距离测量。这种目的的一个常用措施是Wassersein距离。然而,Wassersein距离难以计算和优化,并且在实践中,使用熵正则化技术来改善数值趋同。然而,正规化对学到的解决方案的影响仍未得到很好的理解。在本文中,我们研究了Wassersein距离的几个流行的熵正规提出如何在一个简单的基准设置中冲击解决方案,其中发电机是线性的,目标分布是高维高斯的。我们表明,熵正则化促进了解决方案稀疏化,同时更换了与秸秆角偏差的Wasserstein距离恢复了不断的解决方案。两种正则化技术都消除了Wasserstein距离所遭受的维度的诅咒。我们表明,可以从目标分布中学习最佳发电机,以$ O(1 / \ epsilon ^ 2)$ samples从目标分布中学习。因此,我们得出结论,这些正则化技术可以提高来自大量分布的经验数据的发电机的质量。
translated by 谷歌翻译
In high dimensional variable selection problems, statisticians often seek to design multiple testing procedures controlling the false discovery rate (FDR) and simultaneously discovering more relevant variables. Model-X methods, such as Knockoffs and conditional randomization tests, achieve the first goal of finite-sample FDR control under the assumption of known covariates distribution. However, it is not clear whether these methods can concurrently achieve the second goal of maximizing the number of discoveries. In fact, designing procedures to discover more relevant variables with finite-sample FDR control is a largely open question, even in the arguably simplest linear models. In this paper, we derive near-optimal testing procedures in high dimensional Bayesian linear models with isotropic covariates. We propose a Model-X multiple testing procedure, PoEdCe, which provably controls the frequentist FDR from finite samples even under model misspecification, and conjecturally achieves near-optimal power when the data follow the Bayesian linear model with a known prior. PoEdCe has three important ingredients: Posterior Expectation, distilled Conditional randomization test (dCRT), and the Benjamini-Hochberg procedure with e-values (eBH). The optimality conjecture of PoEdCe is based on a heuristic calculation of its asymptotic true positive proportion (TPP) and false discovery proportion (FDP), which is supported by methods from statistical physics as well as extensive numerical simulations. Furthermore, when the prior is unknown, we show that an empirical Bayes variant of PoEdCe still has finite-sample FDR control and achieves near-optimal power.
translated by 谷歌翻译
许多实际优化问题涉及不确定的参数,这些参数具有概率分布,可以使用上下文特征信息来估算。与首先估计不确定参数的分布然后基于估计优化目标的标准方法相反,我们提出了一个\ textIt {集成条件估计 - 优化}(ICEO)框架,该框架估计了随机参数的潜在条件分布同时考虑优化问题的结构。我们将随机参数的条件分布与上下文特征之间的关系直接建模,然后以与下游优化问题对齐的目标估算概率模型。我们表明,我们的ICEO方法在适度的规律性条件下渐近一致,并以概括范围的形式提供有限的性能保证。在计算上,使用ICEO方法执行估计是一种非凸面且通常是非差异的优化问题。我们提出了一种通用方法,用于近似从估计的条件分布到通过可区分函数的最佳决策的潜在非差异映射,这极大地改善了应用于非凸问题的基于梯度的算法的性能。我们还提供了半代理案例中的多项式优化解决方案方法。还进行了数值实验,以显示我们在不同情况下的方法的经验成功,包括数据样本和模型不匹配。
translated by 谷歌翻译
Bayesian methods, distributionally robust optimization methods, and regularization methods are three pillars of trustworthy machine learning hedging against distributional uncertainty, e.g., the uncertainty of an empirical distribution compared to the true underlying distribution. This paper investigates the connections among the three frameworks and, in particular, explores why these frameworks tend to have smaller generalization errors. Specifically, first, we suggest a quantitative definition for "distributional robustness", propose the concept of "robustness measure", and formalize several philosophical concepts in distributionally robust optimization. Second, we show that Bayesian methods are distributionally robust in the probably approximately correct (PAC) sense; In addition, by constructing a Dirichlet-process-like prior in Bayesian nonparametrics, it can be proven that any regularized empirical risk minimization method is equivalent to a Bayesian method. Third, we show that generalization errors of machine learning models can be characterized using the distributional uncertainty of the nominal distribution and the robustness measures of these machine learning models, which is a new perspective to bound generalization errors, and therefore, explain the reason why distributionally robust machine learning models, Bayesian models, and regularization models tend to have smaller generalization errors.
translated by 谷歌翻译
套索是一种高维回归的方法,当时,当协变量$ p $的订单数量或大于观测值$ n $时,通常使用它。由于两个基本原因,经典的渐近态性理论不适用于该模型:$(1)$正规风险是非平滑的; $(2)$估算器$ \ wideHat {\ boldsymbol {\ theta}} $与true参数vector $ \ boldsymbol {\ theta}^*$无法忽略。结果,标准的扰动论点是渐近正态性的传统基础。另一方面,套索估计器可以精确地以$ n $和$ p $大,$ n/p $的订单为一。这种表征首先是在使用I.I.D的高斯设计的情况下获得的。协变量:在这里,我们将其推广到具有非偏差协方差结构的高斯相关设计。这是根据更简单的``固定设计''模型表示的。我们在两个模型中各种数量的分布之间的距离上建立了非反应界限,它们在合适的稀疏类别中均匀地固定在信号上$ \ boldsymbol {\ theta}^*$。作为应用程序,我们研究了借助拉索的分布,并表明需要校正程度对于计算有效的置信区间是必要的。
translated by 谷歌翻译
这项工作讨论了如何通过链接技术导致监督学习算法的预期概括误差的上限。通过开发一个一般的理论框架,我们根据损失函数的规律性及其链式对应物建立二元性界限,这可以通过将损失从损失从其梯度提升到其梯度来获得。这使我们能够根据Wasserstein距离和其他概率指标重新衍生从文献中绑定的链式相互信息,并获得新颖的链接信息理论理论范围。我们在一些玩具示例中表明,链式的概括结合可能比其标准对应物明显更紧,尤其是当算法选择的假设的分布非常集中时。关键字:概括范围;链信息理论范围;相互信息;瓦斯堡的距离; Pac-Bayes。
translated by 谷歌翻译
Wassersein距离,植根于最佳运输(OT)理论,是在统计和机器学习的各种应用程序之间的概率分布之间的流行差异测量。尽管其结构丰富,但效用,但Wasserstein距离对所考虑的分布中的异常值敏感,在实践中阻碍了适用性。灵感来自Huber污染模型,我们提出了一种新的异常值 - 强大的Wasserstein距离$ \ mathsf {w} _p ^ \ varepsilon $,它允许从每个受污染的分布中删除$ \ varepsilon $异常块。与以前考虑的框架相比,我们的配方达到了高度定期的优化问题,使其更好地分析。利用这一点,我们对$ \ mathsf {w} _p ^ \ varepsilon $的彻底理论研究,包括最佳扰动,规律性,二元性和统计估算和鲁棒性结果的表征。特别是,通过解耦优化变量,我们以$ \ mathsf {w} _p ^ \ varepsilon $到达一个简单的双重形式,可以通过基于标准的基于二元性的OT响音器的基本修改来实现。我们通过应用程序来说明我们的框架的好处,以与受污染的数据集进行生成建模。
translated by 谷歌翻译
对复杂模型执行精确的贝叶斯推理是计算的难治性的。马尔可夫链蒙特卡罗(MCMC)算法可以提供后部分布的可靠近似,但对于大型数据集和高维模型昂贵。减轻这种复杂性的标准方法包括使用子采样技术或在群集中分发数据。然而,这些方法通常在高维方案中不可靠。我们在此处专注于最近的替代类别的MCMC方案,利用类似于乘客(ADMM)优化算法的庆祝交替方向使用的分裂策略。这些方法似乎提供了凭经验最先进的性能,但其高维层的理论行为目前未知。在本文中,我们提出了一个详细的理论研究,该算法之一称为分裂Gibbs采样器。在规律条件下,我们使用RICCI曲率和耦合思路为此方案建立了明确的收敛速率。我们以数字插图支持我们的理论。
translated by 谷歌翻译