Mainstream image caption models are usually two-stage captioners, i.e., calculating object features by pre-trained detector, and feeding them into a language model to generate text descriptions. However, such an operation will cause a task-based information gap to decrease the performance, since the object features in detection task are suboptimal representation and cannot provide all necessary information for subsequent text generation. Besides, object features are usually represented by the last layer features that lose the local details of input images. In this paper, we propose a novel One-Stage Image Captioner (OSIC) with dynamic multi-sight learning, which directly transforms input image into descriptive sentences in one stage. As a result, the task-based information gap can be greatly reduced. To obtain rich features, we use the Swin Transformer to calculate multi-level features, and then feed them into a novel dynamic multi-sight embedding module to exploit both global structure and local texture of input images. To enhance the global modeling of encoder for caption, we propose a new dual-dimensional refining module to non-locally model the interaction of the embedded features. Finally, OSIC can obtain rich and useful information to improve the image caption task. Extensive comparisons on benchmark MS-COCO dataset verified the superior performance of our method.
translated by 谷歌翻译
图像字幕的当前最新方法采用基于区域的特征,因为它们提供了对象级信息,对于描述图像的内容至关重要;它们通常由对象检测器(例如更快的R-CNN)提取。但是,他们有几个问题,例如缺乏上下文信息,不准确检测的风险以及高计算成本。可以通过使用基于网格的功能来解决前两个。但是,如何提取和融合这两种功能是未知的。本文提出了一种仅使用变压器的神经结构,称为砂砾(基于网格和区域的图像字幕变压器),该构建物有效地利用了两个视觉特征来生成更好的字幕。粒度用基于DITR的方法代替了以前方法中使用的基于CNN的检测器,从而使其更快地计算。此外,它的整体设计仅由变压器组成,可以对模型进行端到端的训练。这种创新的设计和双重视觉功能的集成带来了重大的性能提高。几个图像字幕基准的实验结果表明,砂砾的推论准确性和速度优于先前的方法。
translated by 谷歌翻译
图像字幕显示可以通过使用场景图来表示图像中对象的关系来实现更好的性能。当前字幕编码器通常使用图形卷积网(GCN)来表示关系信息,并通过串联或卷积将其与对象区域特征合并,以获取句子解码的最终输入。但是,由于两个原因,现有方法中基于GCN的编码器在字幕上的有效性较小。首先,使用图像字幕作为目标(即最大似然估计),而不是以关系为中心的损失无法完全探索编码器的潜力。其次,使用预训练的模型代替编码器本身提取关系不是灵活的,并且不能有助于模型的解释性。为了提高图像字幕的质量,我们提出了一个新颖的体系结构改革者 - 一种关系变压器,可以生成具有嵌入关系信息的功能,并明确表达图像中对象之间的成对关系。改革者将场景图的生成目标与使用一个修改后的变压器模型的图像字幕结合在一起。这种设计使改革者不仅可以通过提取强大的关系图像特征的利益生成更好的图像标题,还可以生成场景图,以明确描述配对关系。公开可用数据集的实验表明,我们的模型在图像字幕和场景图生成上的最先进方法明显优于最先进的方法
translated by 谷歌翻译
自动在自然语言中自动生成图像的描述称为图像字幕。这是一个积极的研究主题,位于人工智能,计算机视觉和自然语言处理中两个主要领域的交集。图像字幕是图像理解中的重要挑战之一,因为它不仅需要识别图像中的显着对象,还需要其属性及其相互作用的方式。然后,系统必须生成句法和语义上正确的标题,该标题描述了自然语言的图像内容。鉴于深度学习模型的重大进展及其有效编码大量图像并生成正确句子的能力,最近已经提出了几种基于神经的字幕方法,每种方法都试图达到更好的准确性和标题质量。本文介绍了一个基于编码器的图像字幕系统,其中编码器使用以RESNET-101作为骨干为骨干来提取图像中每个区域的空间和全局特征。此阶段之后是一个精致的模型,该模型使用注意力进行注意的机制来提取目标图像对象的视觉特征,然后确定其相互作用。解码器由一个基于注意力的复发模块和一个反思性注意模块组成,该模块会协作地将注意力应用于视觉和文本特征,以增强解码器对长期顺序依赖性建模的能力。在两个基准数据集(MSCOCO和FLICKR30K)上进行的广泛实验显示了提出的方法和生成的字幕的高质量。
translated by 谷歌翻译
大多数当前图像标题模型通常从左到右生成标题。这种单向财产使它们只能利用过去的背景但不是未来的背景。尽管最近的基于改进的模型可以通过基于第一阶段的预检索或预先生成的标题在第二阶段生成新的标题来利用过去和未来的上下文,但是这些模型的解码器通常由两个网络组成〜(即第一阶段中的猎犬或标题器和第二阶段的炼油厂),其只能顺序地执行。在本文中,我们引入了一种用于图像标题的紧凑双向变压器模型,其可以在解码器并行执行解码器时隐式地和明确地利用双向上下文。具体地,通过将​​左右(L2R)和向右(R2L)紧密地耦合到单个紧凑型〜(即隐式)和可选地允许两个流的相互作用(即明确)的相互作用(即明确)来实现来实现。最终标题以句子级集合方式从L2R或R2L流中选择。我们对MSCOCO基准进行广泛的消融研究,并找到紧凑的架构,它用作隐式利用双向上下文的正则化,以及句子级集合比显式交互机制扮演更重要的角色。通过无缝地与单词级集合组合,句子级集合的效果进一步放大。我们进一步将传统的单流自我关键培训扩展到此架构下的双流程版本,并与非视语 - 预先预订模型相比,实现新的最先进导致。源代码可用于{\ color {magenta} \ url {https://github.com/yuanezhou/cbtrans}}。
translated by 谷歌翻译
Attention mechanisms are widely used in current encoder/decoder frameworks of image captioning, where a weighted average on encoded vectors is generated at each time step to guide the caption decoding process. However, the decoder has little idea of whether or how well the attended vector and the given attention query are related, which could make the decoder give misled results. In this paper, we propose an "Attention on Attention" (AoA) module, which extends the conventional attention mechanisms to determine the relevance between attention results and queries. AoA first generates an "information vector" and an "attention gate" using the attention result and the current context, then adds another attention by applying element-wise multiplication to them and finally obtains the "attended information", the expected useful knowledge. We apply AoA to both the encoder and the decoder of our image captioning model, which we name as AoA Network (AoANet). Experiments show that AoANet outperforms all previously published methods and achieves a new state-ofthe-art performance of 129.8 CIDEr-D score on MS COCO "Karpathy" offline test split and 129.6 CIDEr-D (C40) score on the official online testing server. Code is available at https://github.com/husthuaan/AoANet.
translated by 谷歌翻译
Transformer-based architectures represent the state of the art in sequence modeling tasks like machine translation and language understanding. Their applicability to multi-modal contexts like image captioning, however, is still largely under-explored. With the aim of filling this gap, we present M 2 -a Meshed Transformer with Memory for Image Captioning. The architecture improves both the image encoding and the language generation steps: it learns a multi-level representation of the relationships between image regions integrating learned a priori knowledge, and uses a mesh-like connectivity at decoding stage to exploit low-and high-level features. Experimentally, we investigate the performance of the M 2 Transformer and different fully-attentive models in comparison with recurrent ones. When tested on COCO, our proposal achieves a new state of the art in single-model and ensemble configurations on the "Karpathy" test split and on the online test server. We also assess its performances when describing objects unseen in the training set. Trained models and code for reproducing the experiments are publicly
translated by 谷歌翻译
连接视觉和语言在生成智能中起着重要作用。因此,已经致力于图像标题的大型研究工作,即用句法和语义有意义的句子描述图像。从2015年开始,该任务通常通过由Visual Encoder组成的管道和文本生成的语言模型来解决任务。在这些年来,两种组件通过对象区域,属性,介绍多模态连接,完全关注方法和伯特早期融合策略的利用而显着发展。但是,无论令人印象深刻的结果,图像标题的研究还没有达到结论性答案。这项工作旨在提供图像标题方法的全面概述,从视觉编码和文本生成到培训策略,数据集和评估度量。在这方面,我们量化地比较了许多相关的最先进的方法来确定架构和培训策略中最有影响力的技术创新。此外,讨论了问题的许多变体及其开放挑战。这项工作的最终目标是作为理解现有文献的工具,并突出显示计算机视觉和自然语言处理的研究领域的未来方向可以找到最佳的协同作用。
translated by 谷歌翻译
描述使用自然语言的图像被广泛称为图像标题,这是由于计算机视觉和自然语言生成技术的发展而达成了一致的进展。虽然传统的标题模型基于流行度量的高精度,即BLEU,苹果酒和香料,探索了标题与其他类似图像中的标题的能力。为了产生独特的标题,一些先驱采用对比学习或重新加权地面真理标题,其侧重于一个输入图像。然而,忽略了类似图像组中对象之间的关系(例如,相同专辑中的项目或属性或细粒度事件中的物品)。在本文中,我们使用基于组的独特标题模型(Gdiscap)来提高图像标题的独特性,其将每个图像与一个类似的组中的其他图像进行比较,并突出显示每个图像的唯一性。特别是,我们提出了一种基于组的内存注意力(GMA)模块,其存储在图像组中是唯一的对象特征(即,与其他图像中的对象的低相似性)。生成字幕时突出显示这些唯一的对象功能,从而产生更有独特的标题。此外,选择地面标题中的独特单词来监督语言解码器和GMA。最后,我们提出了一种新的评估度量,独特的单词率(Diswordrate)来测量标题的独特性。定量结果表明,该方法显着提高了几种基线模型的独特性,并实现了精度和独特性的最先进的性能。用户学习的结果与定量评估一致,并证明了新的公制Diswordrate的合理性。
translated by 谷歌翻译
We propose Scene Graph Auto-Encoder (SGAE) that incorporates the language inductive bias into the encoderdecoder image captioning framework for more human-like captions. Intuitively, we humans use the inductive bias to compose collocations and contextual inference in discourse. For example, when we see the relation "person on bike", it is natural to replace "on" with "ride" and infer "person riding bike on a road" even the "road" is not evident. Therefore, exploiting such bias as a language prior is expected to help the conventional encoder-decoder models less likely overfit to the dataset bias and focus on reasoning. Specifically, we use the scene graph -a directed graph (G) where an object node is connected by adjective nodes and relationship nodes -to represent the complex structural layout of both image (I) and sentence (S). In the textual domain, we use SGAE to learn a dictionary (D) that helps to reconstruct sentences in the S → G → D → S pipeline, where D encodes the desired language prior; in the vision-language domain, we use the shared D to guide the encoder-decoder in the I → G → D → S pipeline. Thanks to the scene graph representation and shared dictionary, the inductive bias is transferred across domains in principle. We validate the effectiveness of SGAE on the challenging MS-COCO image captioning benchmark, e.g., our SGAE-based single-model achieves a new state-of-theart 127.8 CIDEr-D on the Karpathy split, and a competitive 125.5 CIDEr-D (c40) on the official server even compared to other ensemble models. Code has been made available at: https://github.com/yangxuntu/SGAE.
translated by 谷歌翻译
图像字幕模型通常是根据人体注释的地面真实字幕训练的,该字幕可能会产生准确但通用的字幕。为了提高字幕模型的独特性,我们首先提出了一系列使用大规模视觉语言预训练模型剪辑来评估标题的独特性。然后,我们提出了一种简单有效的训练策略,该策略通过在相似图像组中进行比较来训练模型。我们对各种现有模型进行了广泛的实验,以证明我们的策略的广泛适用性以及基于公制的结果与人类评估的一致性。通过将最佳模型的性能与现有的最新模型进行比较,我们声称我们的模型实现了针对独特性目标的新最先进的。
translated by 谷歌翻译
为了为视频产生适当的标题,推理需要确定相关的概念并注意它们之间的空间关系以及剪辑中的时间发展。我们的端到端编码器视频字幕框架结合了两个基于变压器的体系结构,这是一种用于单个关节时空视频分析的改编变压器,以及用于高级文本生成的基于自我注意力的解码器。此外,我们引入了一种自适应框架选择方案,以减少所需的传入帧数,同时在训练两个变压器时保持相关内容。此外,我们通过汇总每个样本的所有基础真理标题来估计与视频字幕相关的语义概念。我们的方法在MSVD以及大规模的MSR-VTT和VATEX基准数据集上实现了最新的结果,并考虑了多个自然语言产生(NLG)指标。对多样性得分的其他评估突出了我们生成的标题结构的表现力和多样性。
translated by 谷歌翻译
图像标题是自动生成句子的任务,以最好的方式生成描述输入图像。最近用于自动生成图像标题的最成功的技术最近使用了细心的深度学习模型。设计了深入学习模型的设计方式有变化。在本调查中,我们为图像标题的细心深度学习模型提供了相关的文献述评。而不是对深度图像标题模型的所有先前工作进行全面审查,我们解释了用于深度学习模型中的图像标题任务的各种类型的注意机制。用于图像标题的最成功的深度学习模型遵循编码器解码器架构,尽管这些模型采用注意机制的方式存在差异。通过分析图像标题的不同细节深层模型的性能结果,我们的目标是在图像标题中找到深度模型中最成功的注意机制。柔软的关注,自下而上的关注和多主题是一种广泛应用于图像标题的最先进的深度学习模型的关注机构的类型。在当前时,最佳结果是从多针关注的变体实现的,以自下而上的关注。
translated by 谷歌翻译
在过去的几年中,引起了独特的图像字幕(DIC)(DIC) - 生成独特的标题来描述目标图像的独特细节。最近的DIC工作建议通过将目标图像与一组语义相似的参考图像(即基于参考的DIC(REF-DIC))进行比较来生成独特的字幕。它的目的是使生成的字幕可以分开目标图像和参考图像。不幸的是,现有参考作品使用的参考图像易于区分:这些参考图像仅类似于场景级别的目标图像,并且几乎没有常见的对象,因此,即使不考虑该模型,Ref-DIC模型也可以微不足道地生成独特的字幕参考图像。为了确保Ref-DIC模型真正了解目标图像中的唯一对象(或属性),我们首先提出了两个新的Ref-DIC基准。具体而言,我们设计了一个两阶段的匹配机制,该机制严格控制对象 - /属性级别的目标和参考图像之间的相似性(相对于场景级别)。其次,为了产生独特的标题,我们开发了一个强大的基于变压器的ref-DIC基线,称为传播。它不仅从目标图像中提取视觉特征,而且还编码目标和参考图像中对象之间的差异。最后,为了获得更值得信赖的基准测试,我们提出了一个新的评估度量指标,名为Ref-DIC的Discider,评估生成的字幕的准确性和独特性。实验结果表明,我们的传统可以产生独特的标题。此外,它在不同指标上的两个新基准测试中的几个最先进的模型都优于多种最先进的模型。
translated by 谷歌翻译
近年来在开发更好的图像标题模型方面取得了巨大进展,但其中大多数依赖于单独的对象探测器来提取区域特征。最近的视觉语言研究通过利用网格表示来实现更灵活的模型训练和更快推理速度的速度来转向探测器趋势。但是,这种发展主要专注于图像理解任务,并且对标题生成任务的研究仍然较少。在本文中,我们涉及一种更好的无需探测器图像标题模型,并提出了一种基于纯视觉变压器的图像标题模型,称为VITCAP,其中使用了网格表示而不提取区域特征。为了提高性能,我们介绍了一种新颖的概念令牌网络(CTN)来预测语义概念,然后将它们纳入端到端的标题。特别地,CTN是基于视觉变换器构建的,并且旨在通过分类任务预测概念令牌,其中包含丰富的语义信息极大地利益标题任务。与以前的探测器的模型相比,Vitcap大大简化了架构,同时在各种具有挑战性的图像标题数据集上实现了竞争性能。特别是,Vitcap分别达到138.1苹果酒分数,即在Nocaps上的Coco-Caption Karpatal-Splity,93.8和108.6苹果酒分数和Google-CC标题数据集上分别达到138.1苹果酒分数。
translated by 谷歌翻译
It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.
translated by 谷歌翻译
扩展方法探讨了深度学习方法中输入长度中性能瓶颈的可能性。在这项工作中,我们介绍了块静态扩展,该块静态扩展分布和处理输入,以与输入相比,以不同长度为特征的异质和任意大的序列集合。从这种方法中,我们引入了一种名为AspectionNet V2的新模型,该模型使用我们的新培训策略进行了培训,该模型不仅具有有效性,而且与最近的图像字幕中的标准方法相比,它的效率不仅快6倍。我们的新模型在MS-Coco 2014字幕挑战上实现了最先进的表现,在离线测试拆分中得分为143.7 Cider-D,在线评估服务器中的140.8 Cider-D和NoCaps验证集中的72.9 All-Cider。源代码可用:https://github.com/jchenghu/expansionnet_v2
translated by 谷歌翻译
Recent progress on fine-grained visual recognition and visual question answering has featured Bilinear Pooling, which effectively models the 2 nd order interactions across multi-modal inputs. Nevertheless, there has not been evidence in support of building such interactions concurrently with attention mechanism for image captioning. In this paper, we introduce a unified attention block -X-Linear attention block, that fully employs bilinear pooling to selectively capitalize on visual information or perform multimodal reasoning. Technically, X-Linear attention block simultaneously exploits both the spatial and channel-wise bilinear attention distributions to capture the 2 nd order interactions between the input single-modal or multi-modal features. Higher and even infinity order feature interactions are readily modeled through stacking multiple X-Linear attention blocks and equipping the block with Exponential Linear Unit (ELU) in a parameter-free fashion, respectively. Furthermore, we present X-Linear Attention Networks (dubbed as X-LAN) that novelly integrates X-Linear attention block(s) into image encoder and sentence decoder of image captioning model to leverage higher order intraand inter-modal interactions. The experiments on COCO benchmark demonstrate that our X-LAN obtains to-date the best published CIDEr performance of 132.0% on COCO Karpathy test split. When further endowing Transformer with X-Linear attention blocks, CIDEr is boosted up to 132.8%. Source code is available at https://github. com/Panda-Peter/image-captioning.
translated by 谷歌翻译
图像字幕模型旨在通过提供输入图像的自然语言描述来连接视觉和语言。在过去的几年中,通过学习参数模型并提出视觉特征提取的进步或建模更好的多模式连接来解决该任务。在本文中,我们研究了使用KNN记忆的图像字幕方法的开发,可以从外部语料库中检索知识以帮助生成过程。我们的架构结合了一个基于视觉相似性,可区分编码器和KNN-agn-agn-agement注意层的知识检索器,以根据过去的上下文和从外部内存检索的文本进行预测令牌。在可可数据集上进行的实验结果表明,采用明确的外部记忆可以帮助生成过程并提高标题质量。我们的工作开辟了新的途径,以更大规模改善图像字幕模型。
translated by 谷歌翻译
视觉问题应答(VQA)任务利用视觉图像和语言分析来回回答图像的文本问题。它是一个流行的研究课题,在过去十年中越来越多的现实应用。本文介绍了我们最近对AliceMind-MMU的研究(阿里巴巴的编码器 - 解码器来自Damo Academy - 多媒体理解的机器智能实验室),其比人类在VQA上获得相似甚至略微更好的结果。这是通过系统地改善VQA流水线来实现的,包括:(1)具有全面的视觉和文本特征表示的预培训; (2)与学习参加的有效跨模型互动; (3)一个新颖的知识挖掘框架,具有专门的专业专家模块,适用于复杂的VQA任务。处理不同类型的视觉问题,需要具有相应的专业知识在提高我们的VQA架构的表现方面发挥着重要作用,这取决于人力水平。进行了广泛的实验和分析,以证明新的研究工作的有效性。
translated by 谷歌翻译