We propose Scene Graph Auto-Encoder (SGAE) that incorporates the language inductive bias into the encoderdecoder image captioning framework for more human-like captions. Intuitively, we humans use the inductive bias to compose collocations and contextual inference in discourse. For example, when we see the relation "person on bike", it is natural to replace "on" with "ride" and infer "person riding bike on a road" even the "road" is not evident. Therefore, exploiting such bias as a language prior is expected to help the conventional encoder-decoder models less likely overfit to the dataset bias and focus on reasoning. Specifically, we use the scene graph -a directed graph (G) where an object node is connected by adjective nodes and relationship nodes -to represent the complex structural layout of both image (I) and sentence (S). In the textual domain, we use SGAE to learn a dictionary (D) that helps to reconstruct sentences in the S → G → D → S pipeline, where D encodes the desired language prior; in the vision-language domain, we use the shared D to guide the encoder-decoder in the I → G → D → S pipeline. Thanks to the scene graph representation and shared dictionary, the inductive bias is transferred across domains in principle. We validate the effectiveness of SGAE on the challenging MS-COCO image captioning benchmark, e.g., our SGAE-based single-model achieves a new state-of-theart 127.8 CIDEr-D on the Karpathy split, and a competitive 125.5 CIDEr-D (c40) on the official server even compared to other ensemble models. Code has been made available at: https://github.com/yangxuntu/SGAE.
translated by 谷歌翻译
It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.
translated by 谷歌翻译
接地视频描述(GVD)促使标题模型动态地参加适当的视频区域(例如,对象)并生成描述。这样的设置可以帮助解释标题模型的决策,并防止模型在其描述中幻觉的对象词。然而,这种设计主要侧重于对象词生成,因此可能忽略细粒度信息并遭受缺失的视觉概念。此外,关系词(例如,“左转或右”)是通常的时空推断结果,即,这些单词不能在某些空间区域接地。为了解决上述限制,我们设计了GVD的新型关系图学习框架,其中旨在探索细粒度的视觉概念。此外,精细图可以被视为关系归纳知识,以帮助标题模型选择所需的相关信息来生成正确的单词。我们通过自动指标和人类评估验证我们模型的有效性,结果表明,我们的方法可以产生更细粒度和准确的描述,并解决了物体幻觉的问题。
translated by 谷歌翻译
图像字幕显示可以通过使用场景图来表示图像中对象的关系来实现更好的性能。当前字幕编码器通常使用图形卷积网(GCN)来表示关系信息,并通过串联或卷积将其与对象区域特征合并,以获取句子解码的最终输入。但是,由于两个原因,现有方法中基于GCN的编码器在字幕上的有效性较小。首先,使用图像字幕作为目标(即最大似然估计),而不是以关系为中心的损失无法完全探索编码器的潜力。其次,使用预训练的模型代替编码器本身提取关系不是灵活的,并且不能有助于模型的解释性。为了提高图像字幕的质量,我们提出了一个新颖的体系结构改革者 - 一种关系变压器,可以生成具有嵌入关系信息的功能,并明确表达图像中对象之间的成对关系。改革者将场景图的生成目标与使用一个修改后的变压器模型的图像字幕结合在一起。这种设计使改革者不仅可以通过提取强大的关系图像特征的利益生成更好的图像标题,还可以生成场景图,以明确描述配对关系。公开可用数据集的实验表明,我们的模型在图像字幕和场景图生成上的最先进方法明显优于最先进的方法
translated by 谷歌翻译
连接视觉和语言在生成智能中起着重要作用。因此,已经致力于图像标题的大型研究工作,即用句法和语义有意义的句子描述图像。从2015年开始,该任务通常通过由Visual Encoder组成的管道和文本生成的语言模型来解决任务。在这些年来,两种组件通过对象区域,属性,介绍多模态连接,完全关注方法和伯特早期融合策略的利用而显着发展。但是,无论令人印象深刻的结果,图像标题的研究还没有达到结论性答案。这项工作旨在提供图像标题方法的全面概述,从视觉编码和文本生成到培训策略,数据集和评估度量。在这方面,我们量化地比较了许多相关的最先进的方法来确定架构和培训策略中最有影响力的技术创新。此外,讨论了问题的许多变体及其开放挑战。这项工作的最终目标是作为理解现有文献的工具,并突出显示计算机视觉和自然语言处理的研究领域的未来方向可以找到最佳的协同作用。
translated by 谷歌翻译
视频字幕定位目标将复杂的视觉内容解释为文本说明,这要求模型充分了解包括对象及其交互的视频场景。流行的方法采用现成的对象检测网络来提供对象建议,并使用注意机制来建模对象之间的关系。他们通常会错过一些预验证模型的不确定语义概念,并且无法识别对象之间的确切谓词关系。在本文中,我们研究了为给定视频生成文本描述的开放研究任务,并提出了带有元概念的跨模式图(CMG)。具体而言,为了涵盖视频字幕中有用的语义概念,我们弱地学习了文本描述的相应视觉区域,其中相关的视觉区域和文本单词被命名为跨模式元概念。我们通过学习的跨模式元概念动态地构建元概念图。我们还构建了整体视频级别和本地框架级视频图,并具有预测的谓词,以建模视频序列结构。我们通过广泛的实验来验证我们提出的技术的功效,并在两个公共数据集上实现最新结果。
translated by 谷歌翻译
基于文本的图像标题(TextCAP)需要同时对视觉内容的理解并读取图像文本以生成自然语言描述。虽然一项任务可以教导机器来了解复杂的人类环境进一步鉴于我们日常环境中的文本是全部的,但它在正常标题中提出了额外的挑战。基于文本的图像直观地包含丰富和复杂的多模式关系内容,即可以从多视图而不是单个字幕来扩散图像细节。当然,我们可以介绍额外的配对训练数据以显示图像描述的多样性,这一过程是具有额外文本的文本映射对注释的劳动密集型和耗时。基于上述洞察力,我们调查如何使用未配对的培训范例来生成专注于不同图像零件的不同标题。我们提出了多模式关系图对抗性推论(魔法)框架,用于多样化和未配对的Textcap。该框架可以自适应地构建图形之间的图像和模型复杂关系的多个多模式关系图来表示描述性分集。此外,从建模的图表中开发了一种级联的生成对抗性网络,以推断图像句子特征对齐和语言相干水平中的未配对字幕。我们验证了魔法在从图像的不同关系信息项目生成不同标题时的有效性。实验结果表明,魔法可以在不使用任何图像标题训练对的情况下产生非常有前途的结果。
translated by 谷歌翻译
Attention mechanisms are widely used in current encoder/decoder frameworks of image captioning, where a weighted average on encoded vectors is generated at each time step to guide the caption decoding process. However, the decoder has little idea of whether or how well the attended vector and the given attention query are related, which could make the decoder give misled results. In this paper, we propose an "Attention on Attention" (AoA) module, which extends the conventional attention mechanisms to determine the relevance between attention results and queries. AoA first generates an "information vector" and an "attention gate" using the attention result and the current context, then adds another attention by applying element-wise multiplication to them and finally obtains the "attended information", the expected useful knowledge. We apply AoA to both the encoder and the decoder of our image captioning model, which we name as AoA Network (AoANet). Experiments show that AoANet outperforms all previously published methods and achieves a new state-ofthe-art performance of 129.8 CIDEr-D score on MS COCO "Karpathy" offline test split and 129.6 CIDEr-D (C40) score on the official online testing server. Code is available at https://github.com/husthuaan/AoANet.
translated by 谷歌翻译
Transformer-based architectures represent the state of the art in sequence modeling tasks like machine translation and language understanding. Their applicability to multi-modal contexts like image captioning, however, is still largely under-explored. With the aim of filling this gap, we present M 2 -a Meshed Transformer with Memory for Image Captioning. The architecture improves both the image encoding and the language generation steps: it learns a multi-level representation of the relationships between image regions integrating learned a priori knowledge, and uses a mesh-like connectivity at decoding stage to exploit low-and high-level features. Experimentally, we investigate the performance of the M 2 Transformer and different fully-attentive models in comparison with recurrent ones. When tested on COCO, our proposal achieves a new state of the art in single-model and ensemble configurations on the "Karpathy" test split and on the online test server. We also assess its performances when describing objects unseen in the training set. Trained models and code for reproducing the experiments are publicly
translated by 谷歌翻译
当代视觉标题模型通常是幻觉的对象,其实际上并不是一种场景,因为目视错误分类或过度依赖导致视觉信息与目标词汇词之间的语义不一致。最常见的方式是鼓励标题模型将生成的对象字或短语动态链接到图像的适当区域,即接地图像标题(GIC)。然而,GIC利用辅助任务(接地对象),这些任务(接地对象)没有解决对象幻觉的关键问题,即语义不一致。在本文中,我们对上面的问题进行了一种小说 - 利用视觉和语言模式之间的语义一致性。具体而言,我们提出了与GIC的共识RRAPH表示学习框架(CGRL),其纳入接地标题管道的共识表示。通过将可视图(例如,场景图)对准到图表中的节点和边的语言图来学习共识。通过对齐的共识,标题模型可以捕获正确的语言特征和视觉相关性,然后进一步接地适当的图像区域。我们验证了我们模型的有效性,对象幻觉(-9%主席)在Flickr30k实体数据集中显着下降。此外,我们的CGR还通过多种自动度量和人体评估评估,结果表明,该方法可以同时提高图像标题(+2.9苹果酒)和接地的性能(+2.3 f1loc)。
translated by 谷歌翻译
图像标题是自动生成句子的任务,以最好的方式生成描述输入图像。最近用于自动生成图像标题的最成功的技术最近使用了细心的深度学习模型。设计了深入学习模型的设计方式有变化。在本调查中,我们为图像标题的细心深度学习模型提供了相关的文献述评。而不是对深度图像标题模型的所有先前工作进行全面审查,我们解释了用于深度学习模型中的图像标题任务的各种类型的注意机制。用于图像标题的最成功的深度学习模型遵循编码器解码器架构,尽管这些模型采用注意机制的方式存在差异。通过分析图像标题的不同细节深层模型的性能结果,我们的目标是在图像标题中找到深度模型中最成功的注意机制。柔软的关注,自下而上的关注和多主题是一种广泛应用于图像标题的最先进的深度学习模型的关注机构的类型。在当前时,最佳结果是从多针关注的变体实现的,以自下而上的关注。
translated by 谷歌翻译
Mainstream image caption models are usually two-stage captioners, i.e., calculating object features by pre-trained detector, and feeding them into a language model to generate text descriptions. However, such an operation will cause a task-based information gap to decrease the performance, since the object features in detection task are suboptimal representation and cannot provide all necessary information for subsequent text generation. Besides, object features are usually represented by the last layer features that lose the local details of input images. In this paper, we propose a novel One-Stage Image Captioner (OSIC) with dynamic multi-sight learning, which directly transforms input image into descriptive sentences in one stage. As a result, the task-based information gap can be greatly reduced. To obtain rich features, we use the Swin Transformer to calculate multi-level features, and then feed them into a novel dynamic multi-sight embedding module to exploit both global structure and local texture of input images. To enhance the global modeling of encoder for caption, we propose a new dual-dimensional refining module to non-locally model the interaction of the embedded features. Finally, OSIC can obtain rich and useful information to improve the image caption task. Extensive comparisons on benchmark MS-COCO dataset verified the superior performance of our method.
translated by 谷歌翻译
场景图是一个场景的结构化表示,可以清楚地表达场景中对象之间的对象,属性和关系。随着计算机视觉技术继续发展,只需检测和识别图像中的对象,人们不再满足。相反,人们期待着对视觉场景更高的理解和推理。例如,给定图像,我们希望不仅检测和识别图像中的对象,还要知道对象之间的关系(视觉关系检测),并基于图像内容生成文本描述(图像标题)。或者,我们可能希望机器告诉我们图像中的小女孩正在做什么(视觉问题应答(VQA)),甚至从图像中移除狗并找到类似的图像(图像编辑和检索)等。这些任务需要更高水平的图像视觉任务的理解和推理。场景图只是场景理解的强大工具。因此,场景图引起了大量研究人员的注意力,相关的研究往往是跨模型,复杂,快速发展的。然而,目前没有对场景图的相对系统的调查。为此,本调查对现行场景图研究进行了全面调查。更具体地说,我们首先总结了场景图的一般定义,随后对场景图(SGG)和SGG的发电方法进行了全面和系统的讨论,借助于先验知识。然后,我们调查了场景图的主要应用,并汇总了最常用的数据集。最后,我们对场景图的未来发展提供了一些见解。我们相信这将是未来研究场景图的一个非常有帮助的基础。
translated by 谷歌翻译
Automatically generating a natural language description of an image has attracted interests recently both because of its importance in practical applications and because it connects two major artificial intelligence fields: computer vision and natural language processing. Existing approaches are either top-down, which start from a gist of an image and convert it into words, or bottom-up, which come up with words describing various aspects of an image and then combine them. In this paper, we propose a new algorithm that combines both approaches through a model of semantic attention. Our algorithm learns to selectively attend to semantic concept proposals and fuse them into hidden states and outputs of recurrent neural networks.The selection and fusion form a feedback connecting the top-down and bottom-up computation. We evaluate our algorithm on two public benchmarks: Microsoft COCO and Flickr30K. Experimental results show that our algorithm significantly outperforms the state-of-the-art approaches consistently across different evaluation metrics.
translated by 谷歌翻译
Recent progress on fine-grained visual recognition and visual question answering has featured Bilinear Pooling, which effectively models the 2 nd order interactions across multi-modal inputs. Nevertheless, there has not been evidence in support of building such interactions concurrently with attention mechanism for image captioning. In this paper, we introduce a unified attention block -X-Linear attention block, that fully employs bilinear pooling to selectively capitalize on visual information or perform multimodal reasoning. Technically, X-Linear attention block simultaneously exploits both the spatial and channel-wise bilinear attention distributions to capture the 2 nd order interactions between the input single-modal or multi-modal features. Higher and even infinity order feature interactions are readily modeled through stacking multiple X-Linear attention blocks and equipping the block with Exponential Linear Unit (ELU) in a parameter-free fashion, respectively. Furthermore, we present X-Linear Attention Networks (dubbed as X-LAN) that novelly integrates X-Linear attention block(s) into image encoder and sentence decoder of image captioning model to leverage higher order intraand inter-modal interactions. The experiments on COCO benchmark demonstrate that our X-LAN obtains to-date the best published CIDEr performance of 132.0% on COCO Karpathy test split. When further endowing Transformer with X-Linear attention blocks, CIDEr is boosted up to 132.8%. Source code is available at https://github. com/Panda-Peter/image-captioning.
translated by 谷歌翻译
图像标题将复杂的视觉信息转换为抽象的自然语言以获得表示的抽象自然语言,这可以帮助计算机快速了解世界。但是,由于真实环境的复杂性,它需要识别关键对象并实现其连接,并进一步生成自然语言。整个过程涉及视觉理解模块和语言生成模块,它为深度神经网络的设计带来了比其他任务的深度神经网络的更具挑战。神经架构搜索(NAS)在各种图像识别任务中显示了它的重要作用。此外,RNN在图像标题任务中起重要作用。我们介绍了一种自动调用方法,可以更好地设计图像标题的解码器模块,其中我们使用NAS自动设计称为Autornn的解码器模块。我们使用基于共享参数的加固学习方法有效地自动设计Autornn。 AutoCaption的搜索空间包括图层之间的连接和层次的操作,它可以使Autornn快递更多的架构。特别是,RNN等同于搜索空间的子集。 MSCOCO数据集上的实验表明,我们的自动驾统模型可以比传统的手工设计方法实现更好的性能。
translated by 谷歌翻译
在图像中理解丰富的语义并按语言顺序订购它们对于构成视觉上且语言上连贯的描述以进行图像字幕至关重要。现代技术通常利用了预训练的对象探测器/分类器,以在图像中挖掘语义,同时留下了固有的语言序列,语义序列不足。在本文中,我们提出了一个新的型变压器式结构的食谱,即理解和订购语义网络(COS-NET),它在新颖地将丰富的语义理解和可学习的语义订购过程统一到单个体系结构中。从技术上讲,我们最初利用跨模式检索模型来搜索每个图像的相关句子,并且搜索句子中的所有单词都被视为主要语义提示。接下来,设计了一种新颖的语义理解者,​​以滤除原始语义线索中无关的语义单词,同时推断出图像中视觉上基于的缺失相关语义单词。之后,我们将所有经过筛选和丰富的语义单词喂入语义排名,该语义排名学会学会以语言顺序分配所有语义单词。这样的有序语义单词序列与图像的视觉令牌进一步集成在一起,以触发句子的生成。经验证据表明,COS-NET清楚地超过了可可的最新方法,并在Karpathy测试拆分方面达到了最佳的苹果酒评分141.1%。源代码可在\ url {https://github.com/yehli/xmodaler/tree/master/master/configs/image_caption/cosnet}获得。
translated by 谷歌翻译
自动在自然语言中自动生成图像的描述称为图像字幕。这是一个积极的研究主题,位于人工智能,计算机视觉和自然语言处理中两个主要领域的交集。图像字幕是图像理解中的重要挑战之一,因为它不仅需要识别图像中的显着对象,还需要其属性及其相互作用的方式。然后,系统必须生成句法和语义上正确的标题,该标题描述了自然语言的图像内容。鉴于深度学习模型的重大进展及其有效编码大量图像并生成正确句子的能力,最近已经提出了几种基于神经的字幕方法,每种方法都试图达到更好的准确性和标题质量。本文介绍了一个基于编码器的图像字幕系统,其中编码器使用以RESNET-101作为骨干为骨干来提取图像中每个区域的空间和全局特征。此阶段之后是一个精致的模型,该模型使用注意力进行注意的机制来提取目标图像对象的视觉特征,然后确定其相互作用。解码器由一个基于注意力的复发模块和一个反思性注意模块组成,该模块会协作地将注意力应用于视觉和文本特征,以增强解码器对长期顺序依赖性建模的能力。在两个基准数据集(MSCOCO和FLICKR30K)上进行的广泛实验显示了提出的方法和生成的字幕的高质量。
translated by 谷歌翻译
描述使用自然语言的图像被广泛称为图像标题,这是由于计算机视觉和自然语言生成技术的发展而达成了一致的进展。虽然传统的标题模型基于流行度量的高精度,即BLEU,苹果酒和香料,探索了标题与其他类似图像中的标题的能力。为了产生独特的标题,一些先驱采用对比学习或重新加权地面真理标题,其侧重于一个输入图像。然而,忽略了类似图像组中对象之间的关系(例如,相同专辑中的项目或属性或细粒度事件中的物品)。在本文中,我们使用基于组的独特标题模型(Gdiscap)来提高图像标题的独特性,其将每个图像与一个类似的组中的其他图像进行比较,并突出显示每个图像的唯一性。特别是,我们提出了一种基于组的内存注意力(GMA)模块,其存储在图像组中是唯一的对象特征(即,与其他图像中的对象的低相似性)。生成字幕时突出显示这些唯一的对象功能,从而产生更有独特的标题。此外,选择地面标题中的独特单词来监督语言解码器和GMA。最后,我们提出了一种新的评估度量,独特的单词率(Diswordrate)来测量标题的独特性。定量结果表明,该方法显着提高了几种基线模型的独特性,并实现了精度和独特性的最先进的性能。用户学习的结果与定量评估一致,并证明了新的公制Diswordrate的合理性。
translated by 谷歌翻译
深度学习技术导致了通用对象检测领域的显着突破,近年来产生了很多场景理解的任务。由于其强大的语义表示和应用于场景理解,场景图一直是研究的焦点。场景图生成(SGG)是指自动将图像映射到语义结构场景图中的任务,这需要正确标记检测到的对象及其关系。虽然这是一项具有挑战性的任务,但社区已经提出了许多SGG方法并取得了良好的效果。在本文中,我们对深度学习技术带来了近期成就的全面调查。我们审查了138个代表作品,涵盖了不同的输入方式,并系统地将现有的基于图像的SGG方法从特征提取和融合的角度进行了综述。我们试图通过全面的方式对现有的视觉关系检测方法进行连接和系统化现有的视觉关系检测方法,概述和解释SGG的机制和策略。最后,我们通过深入讨论当前存在的问题和未来的研究方向来完成这项调查。本调查将帮助读者更好地了解当前的研究状况和想法。
translated by 谷歌翻译