大多数当前图像标题模型通常从左到右生成标题。这种单向财产使它们只能利用过去的背景但不是未来的背景。尽管最近的基于改进的模型可以通过基于第一阶段的预检索或预先生成的标题在第二阶段生成新的标题来利用过去和未来的上下文,但是这些模型的解码器通常由两个网络组成〜(即第一阶段中的猎犬或标题器和第二阶段的炼油厂),其只能顺序地执行。在本文中,我们引入了一种用于图像标题的紧凑双向变压器模型,其可以在解码器并行执行解码器时隐式地和明确地利用双向上下文。具体地,通过将​​左右(L2R)和向右(R2L)紧密地耦合到单个紧凑型〜(即隐式)和可选地允许两个流的相互作用(即明确)的相互作用(即明确)来实现来实现。最终标题以句子级集合方式从L2R或R2L流中选择。我们对MSCOCO基准进行广泛的消融研究,并找到紧凑的架构,它用作隐式利用双向上下文的正则化,以及句子级集合比显式交互机制扮演更重要的角色。通过无缝地与单词级集合组合,句子级集合的效果进一步放大。我们进一步将传统的单流自我关键培训扩展到此架构下的双流程版本,并与非视语 - 预先预订模型相比,实现新的最先进导致。源代码可用于{\ color {magenta} \ url {https://github.com/yuanezhou/cbtrans}}。
translated by 谷歌翻译
现有的图像字幕的方法通常从左到右生成句子逐字,并在本地上下文中受到限制,包括给定的图像和历史记录生成的单词。在解码过程中,有许多研究目的是利用全球信息,例如迭代改进。但是,它仍然探讨了如何有效,有效地纳入未来的环境。为了回答这个问题,受到非自动回归图像字幕(NAIC)的启发,可以通过修改后的掩码操作利用两侧关系,我们的目标是将此进步嫁接到常规的自动回归图像字幕(AIC)模型,同时保持推理效率而无需进行推理效率额外的时间成本。具体而言,首先对AIC和NAIC模型结合了共享的视觉编码器,迫使视觉编码器包含足够有效的未来上下文。然后鼓励AIC模型捕获NAIC模型在其不自信的单词上互换的跨层互换的因果动态,该单词遵循教师学生的范式,并通过分配校准训练目标进行了优化。经验证据表明,我们所提出的方法清楚地超过了自动指标和人类评估的最新基线,对MS COCO基准测试。源代码可在以下网址获得:https://github.com/feizc/future-caption。
translated by 谷歌翻译
Transformer-based architectures represent the state of the art in sequence modeling tasks like machine translation and language understanding. Their applicability to multi-modal contexts like image captioning, however, is still largely under-explored. With the aim of filling this gap, we present M 2 -a Meshed Transformer with Memory for Image Captioning. The architecture improves both the image encoding and the language generation steps: it learns a multi-level representation of the relationships between image regions integrating learned a priori knowledge, and uses a mesh-like connectivity at decoding stage to exploit low-and high-level features. Experimentally, we investigate the performance of the M 2 Transformer and different fully-attentive models in comparison with recurrent ones. When tested on COCO, our proposal achieves a new state of the art in single-model and ensemble configurations on the "Karpathy" test split and on the online test server. We also assess its performances when describing objects unseen in the training set. Trained models and code for reproducing the experiments are publicly
translated by 谷歌翻译
连接视觉和语言在生成智能中起着重要作用。因此,已经致力于图像标题的大型研究工作,即用句法和语义有意义的句子描述图像。从2015年开始,该任务通常通过由Visual Encoder组成的管道和文本生成的语言模型来解决任务。在这些年来,两种组件通过对象区域,属性,介绍多模态连接,完全关注方法和伯特早期融合策略的利用而显着发展。但是,无论令人印象深刻的结果,图像标题的研究还没有达到结论性答案。这项工作旨在提供图像标题方法的全面概述,从视觉编码和文本生成到培训策略,数据集和评估度量。在这方面,我们量化地比较了许多相关的最先进的方法来确定架构和培训策略中最有影响力的技术创新。此外,讨论了问题的许多变体及其开放挑战。这项工作的最终目标是作为理解现有文献的工具,并突出显示计算机视觉和自然语言处理的研究领域的未来方向可以找到最佳的协同作用。
translated by 谷歌翻译
It is well believed that the higher uncertainty in a word of the caption, the more inter-correlated context information is required to determine it. However, current image captioning methods usually consider the generation of all words in a sentence sequentially and equally. In this paper, we propose an uncertainty-aware image captioning framework, which parallelly and iteratively operates insertion of discontinuous candidate words between existing words from easy to difficult until converged. We hypothesize that high-uncertainty words in a sentence need more prior information to make a correct decision and should be produced at a later stage. The resulting non-autoregressive hierarchy makes the caption generation explainable and intuitive. Specifically, we utilize an image-conditioned bag-of-word model to measure the word uncertainty and apply a dynamic programming algorithm to construct the training pairs. During inference, we devise an uncertainty-adaptive parallel beam search technique that yields an empirically logarithmic time complexity. Extensive experiments on the MS COCO benchmark reveal that our approach outperforms the strong baseline and related methods on both captioning quality as well as decoding speed.
translated by 谷歌翻译
This paper presents a unified Vision-Language Pre-training (VLP) model. The model is unified in that (1) it can be finetuned for either vision-language generation (e.g., image captioning) or understanding (e.g., visual question answering) tasks, and (2) it uses a shared multi-layer transformer network for both encoding and decoding, which differs from many existing methods where the encoder and decoder are implemented using separate models. The unified VLP model is pre-trained on a large amount of image-text pairs using the unsupervised learning objectives of two tasks: bidirectional and sequence-to-sequence (seq2seq) masked vision-language prediction. The two tasks differ solely in what context the prediction conditions on. This is controlled by utilizing specific self-attention masks for the shared transformer network. To the best of our knowledge, VLP is the first reported model that achieves state-of-the-art results on both vision-language generation and understanding tasks, as disparate as image captioning and visual question answering, across three challenging benchmark datasets: COCO Captions, Flickr30k Captions, and VQA 2.0. The code and the pre-trained models are available at https://github.com/LuoweiZhou/VLP.
translated by 谷歌翻译
Attention mechanisms are widely used in current encoder/decoder frameworks of image captioning, where a weighted average on encoded vectors is generated at each time step to guide the caption decoding process. However, the decoder has little idea of whether or how well the attended vector and the given attention query are related, which could make the decoder give misled results. In this paper, we propose an "Attention on Attention" (AoA) module, which extends the conventional attention mechanisms to determine the relevance between attention results and queries. AoA first generates an "information vector" and an "attention gate" using the attention result and the current context, then adds another attention by applying element-wise multiplication to them and finally obtains the "attended information", the expected useful knowledge. We apply AoA to both the encoder and the decoder of our image captioning model, which we name as AoA Network (AoANet). Experiments show that AoANet outperforms all previously published methods and achieves a new state-ofthe-art performance of 129.8 CIDEr-D score on MS COCO "Karpathy" offline test split and 129.6 CIDEr-D (C40) score on the official online testing server. Code is available at https://github.com/husthuaan/AoANet.
translated by 谷歌翻译
Mainstream image caption models are usually two-stage captioners, i.e., calculating object features by pre-trained detector, and feeding them into a language model to generate text descriptions. However, such an operation will cause a task-based information gap to decrease the performance, since the object features in detection task are suboptimal representation and cannot provide all necessary information for subsequent text generation. Besides, object features are usually represented by the last layer features that lose the local details of input images. In this paper, we propose a novel One-Stage Image Captioner (OSIC) with dynamic multi-sight learning, which directly transforms input image into descriptive sentences in one stage. As a result, the task-based information gap can be greatly reduced. To obtain rich features, we use the Swin Transformer to calculate multi-level features, and then feed them into a novel dynamic multi-sight embedding module to exploit both global structure and local texture of input images. To enhance the global modeling of encoder for caption, we propose a new dual-dimensional refining module to non-locally model the interaction of the embedded features. Finally, OSIC can obtain rich and useful information to improve the image caption task. Extensive comparisons on benchmark MS-COCO dataset verified the superior performance of our method.
translated by 谷歌翻译
描述使用自然语言的图像被广泛称为图像标题,这是由于计算机视觉和自然语言生成技术的发展而达成了一致的进展。虽然传统的标题模型基于流行度量的高精度,即BLEU,苹果酒和香料,探索了标题与其他类似图像中的标题的能力。为了产生独特的标题,一些先驱采用对比学习或重新加权地面真理标题,其侧重于一个输入图像。然而,忽略了类似图像组中对象之间的关系(例如,相同专辑中的项目或属性或细粒度事件中的物品)。在本文中,我们使用基于组的独特标题模型(Gdiscap)来提高图像标题的独特性,其将每个图像与一个类似的组中的其他图像进行比较,并突出显示每个图像的唯一性。特别是,我们提出了一种基于组的内存注意力(GMA)模块,其存储在图像组中是唯一的对象特征(即,与其他图像中的对象的低相似性)。生成字幕时突出显示这些唯一的对象功能,从而产生更有独特的标题。此外,选择地面标题中的独特单词来监督语言解码器和GMA。最后,我们提出了一种新的评估度量,独特的单词率(Diswordrate)来测量标题的独特性。定量结果表明,该方法显着提高了几种基线模型的独特性,并实现了精度和独特性的最先进的性能。用户学习的结果与定量评估一致,并证明了新的公制Diswordrate的合理性。
translated by 谷歌翻译
图像字幕的当前最新方法采用基于区域的特征,因为它们提供了对象级信息,对于描述图像的内容至关重要;它们通常由对象检测器(例如更快的R-CNN)提取。但是,他们有几个问题,例如缺乏上下文信息,不准确检测的风险以及高计算成本。可以通过使用基于网格的功能来解决前两个。但是,如何提取和融合这两种功能是未知的。本文提出了一种仅使用变压器的神经结构,称为砂砾(基于网格和区域的图像字幕变压器),该构建物有效地利用了两个视觉特征来生成更好的字幕。粒度用基于DITR的方法代替了以前方法中使用的基于CNN的检测器,从而使其更快地计算。此外,它的整体设计仅由变压器组成,可以对模型进行端到端的训练。这种创新的设计和双重视觉功能的集成带来了重大的性能提高。几个图像字幕基准的实验结果表明,砂砾的推论准确性和速度优于先前的方法。
translated by 谷歌翻译
视频字幕结合了视频理解和语言生成。与图像标题不同,描述具有几乎每个对象的细节的静态图像,视频字幕通常考虑一系列帧和偏置朝向聚焦对象的偏差,例如,保持焦点的对象,无论更改的背景如何。因此,检测和适当地容纳聚焦对象在视频字幕中是至关重要的。为了执行聚焦对象的描述并实现可控制的视频标题,我们提出了一种面向对象的非自动增加方法(O2NA),其执行三个步骤中的标题生成:1)识别聚焦对象并预测其在目标字幕中的位置; 2)生成相关的属性词和这些聚焦对象的关系词来形成标题草案; 3)将视频信息组合以将标题草案精炼到流利的最终标题。由于产生了聚焦的对象并领先于其他单词,因此难以应用逐字的自回归生成过程;相反,我们采用了非自动评级方法。在两个基准数据集,即MSR-VTT和MSVD上的实验证明了O2NA的有效性,这实现了与最先进的结果竞争,但具有更高的多样性和推理速度。
translated by 谷歌翻译
图像字幕显示可以通过使用场景图来表示图像中对象的关系来实现更好的性能。当前字幕编码器通常使用图形卷积网(GCN)来表示关系信息,并通过串联或卷积将其与对象区域特征合并,以获取句子解码的最终输入。但是,由于两个原因,现有方法中基于GCN的编码器在字幕上的有效性较小。首先,使用图像字幕作为目标(即最大似然估计),而不是以关系为中心的损失无法完全探索编码器的潜力。其次,使用预训练的模型代替编码器本身提取关系不是灵活的,并且不能有助于模型的解释性。为了提高图像字幕的质量,我们提出了一个新颖的体系结构改革者 - 一种关系变压器,可以生成具有嵌入关系信息的功能,并明确表达图像中对象之间的成对关系。改革者将场景图的生成目标与使用一个修改后的变压器模型的图像字幕结合在一起。这种设计使改革者不仅可以通过提取强大的关系图像特征的利益生成更好的图像标题,还可以生成场景图,以明确描述配对关系。公开可用数据集的实验表明,我们的模型在图像字幕和场景图生成上的最先进方法明显优于最先进的方法
translated by 谷歌翻译
在序列到序列学习中,例如,自然语言生成,解码器依赖于注意机制,以有效地从编码器中提取信息。虽然常见的做法是从最后一个编码器层绘制信息,但最近的工作已经提出用于使用来自不同编码器层的表示,以进行多样化的信息。尽管如此,解码器仍然仅获得源序列的单个视图,这可能导致由于层级绕过问题而导致编码器层堆栈的训练不足。在这项工作中,我们提出了层次的多视图解码,其中对于每个解码器层以及来自最后一个编码器层的表示,它作为全局视图,来自其他编码器层的那些是用于立体视图的源序列。系统实验和分析表明,我们成功地解决了层次结构绕过问题,需要几乎可忽略的参数增加,并大大提高了五种不同任务的深度表示的序列到序列学习的性能,即机器翻译,抽象总结,图像标题,视频字幕和医疗报告生成。特别是,我们的方法在八个基准数据集中实现了新的最先进的结果,包括低资源机器转换数据集和两个低资源医疗报告生成数据集。
translated by 谷歌翻译
最近,自我注意事项的使用已导致最先进的工作,从而实现了视觉任务,例如图像字幕以及自然语言理解和产生(NLU和NLG)任务以及计算机视觉任务,例如图像分类。这是因为自我注意力图绘制了输入源和目标序列元素之间的内部相互作用。尽管自我注意力成功地计算了注意值并绘制输入源和目标序列元素之间的关系,但没有控制注意力强度的机制。在现实世界中,当彼此面对面或声音交流时,我们倾向于以各种强度表达不同的视觉和语言背景。有些单词可能会带来(与之交谈)更多的压力和重量,表明在整个句子的上下文中,该词的重要性。基于此直觉,我们提出了区域之路注入注意计算(Zodiac),其中计算输入序列元素中注意值的强度是根据输入序列元素的上下文计算的。我们的实验结果表明,与变压器模型中的自我发场模块相比,采用黄道带导致更好的性能。最终目标是找出我们是否可以使用这种方法来修改变压器模型中的自我发场模块,该方法可能对其他模型可以扩展,从而利用自我发作的核心。我们的发现表明,这一特殊目标值得研究社区的进一步关注和调查。 www.github.com/zanyarz/zodiac可用。
translated by 谷歌翻译
可控图像标题(CIC)任务旨在在指定的控制信号上生成条件。提出了几种与结构相关的控制信号来控制句子的语义结构,例如句子长度和语音标签序列。然而,由于基于精度的奖励主要针对内容而不是语义结构,因此现有的增强培训方法不适用于结构相关的CIC模型。缺乏加固训练导致偏差和优化功能和评估度量之间的不一致。在本文中,我们提出了一种用于结构相关控制信号的新型加固训练方法:自注释培训(SAT),提高CIC模型的准确性和可控性。在SAT中,设计递归注释机制(RAM)以强制输入控制信号以匹配实际输出句子。此外,我们提出了额外的对准奖励来Finetune在SAT方法后培训的CIC模型,这进一步提高了模型的可控性。在MSCOCO基准测试中,我们对不同结构相关的控制信号和不同基线模型进行广泛的实验,结果表明了我们方法的有效性和普遍性。
translated by 谷歌翻译
图像字幕模型旨在通过提供输入图像的自然语言描述来连接视觉和语言。在过去的几年中,通过学习参数模型并提出视觉特征提取的进步或建模更好的多模式连接来解决该任务。在本文中,我们研究了使用KNN记忆的图像字幕方法的开发,可以从外部语料库中检索知识以帮助生成过程。我们的架构结合了一个基于视觉相似性,可区分编码器和KNN-agn-agn-agement注意层的知识检索器,以根据过去的上下文和从外部内存检索的文本进行预测令牌。在可可数据集上进行的实验结果表明,采用明确的外部记忆可以帮助生成过程并提高标题质量。我们的工作开辟了新的途径,以更大规模改善图像字幕模型。
translated by 谷歌翻译
图像标题是自动生成句子的任务,以最好的方式生成描述输入图像。最近用于自动生成图像标题的最成功的技术最近使用了细心的深度学习模型。设计了深入学习模型的设计方式有变化。在本调查中,我们为图像标题的细心深度学习模型提供了相关的文献述评。而不是对深度图像标题模型的所有先前工作进行全面审查,我们解释了用于深度学习模型中的图像标题任务的各种类型的注意机制。用于图像标题的最成功的深度学习模型遵循编码器解码器架构,尽管这些模型采用注意机制的方式存在差异。通过分析图像标题的不同细节深层模型的性能结果,我们的目标是在图像标题中找到深度模型中最成功的注意机制。柔软的关注,自下而上的关注和多主题是一种广泛应用于图像标题的最先进的深度学习模型的关注机构的类型。在当前时,最佳结果是从多针关注的变体实现的,以自下而上的关注。
translated by 谷歌翻译
Recent years have witnessed the rapid progress of image captioning. However, the demands for large memory storage and heavy computational burden prevent these captioning models from being deployed on mobile devices. The main obstacles lie in the heavyweight visual feature extractors (i.e., object detectors) and complicated cross-modal fusion networks. To this end, we propose LightCap, a lightweight image captioner for resource-limited devices. The core design is built on the recent CLIP model for efficient image captioning. To be specific, on the one hand, we leverage the CLIP model to extract the compact grid features without relying on the time-consuming object detectors. On the other hand, we transfer the image-text retrieval design of CLIP to image captioning scenarios by devising a novel visual concept extractor and a cross-modal modulator. We further optimize the cross-modal fusion model and parallel prediction heads via sequential and ensemble distillations. With the carefully designed architecture, our model merely contains 40M parameters, saving the model size by more than 75% and the FLOPs by more than 98% in comparison with the current state-of-the-art methods. In spite of the low capacity, our model still exhibits state-of-the-art performance on prevalent datasets, e.g., 136.6 CIDEr on COCO Karpathy test split. Testing on the smartphone with only a single CPU, the proposed LightCap exhibits a fast inference speed of 188ms per image, which is ready for practical applications.
translated by 谷歌翻译
在过去的几年中,引起了独特的图像字幕(DIC)(DIC) - 生成独特的标题来描述目标图像的独特细节。最近的DIC工作建议通过将目标图像与一组语义相似的参考图像(即基于参考的DIC(REF-DIC))进行比较来生成独特的字幕。它的目的是使生成的字幕可以分开目标图像和参考图像。不幸的是,现有参考作品使用的参考图像易于区分:这些参考图像仅类似于场景级别的目标图像,并且几乎没有常见的对象,因此,即使不考虑该模型,Ref-DIC模型也可以微不足道地生成独特的字幕参考图像。为了确保Ref-DIC模型真正了解目标图像中的唯一对象(或属性),我们首先提出了两个新的Ref-DIC基准。具体而言,我们设计了一个两阶段的匹配机制,该机制严格控制对象 - /属性级别的目标和参考图像之间的相似性(相对于场景级别)。其次,为了产生独特的标题,我们开发了一个强大的基于变压器的ref-DIC基线,称为传播。它不仅从目标图像中提取视觉特征,而且还编码目标和参考图像中对象之间的差异。最后,为了获得更值得信赖的基准测试,我们提出了一个新的评估度量指标,名为Ref-DIC的Discider,评估生成的字幕的准确性和独特性。实验结果表明,我们的传统可以产生独特的标题。此外,它在不同指标上的两个新基准测试中的几个最先进的模型都优于多种最先进的模型。
translated by 谷歌翻译
密集的视频字幕(DVC)旨在生成多句子描述,以阐明视频中的多个事件,这是具有挑战性,需要的视觉一致性,疑惑一致性和语言多样性。现有方法主要生成各个视频段的标题,缺乏适应全局视觉上下文和快速发展的视觉内容和文本描述之间的渐进对齐,这导致冗余和拼接描述。在本文中,我们介绍了信息流的概念,以模拟跨视频序列和标题的渐进信息。通过设计跨模型信息流对准机制,捕获和对齐的视觉和文本信息流,其在事件/主题演化上以更丰富的上下文和动态赋予标题处理。基于跨模型信息流对准模块,我们进一步提出了DVCFlow框架,它由全球本地视觉编码器组成,用于捕获每个视频段的全局功能和本地特征,以及用于产生标题的预先培训的标题生成器。对流行的ActivityNet标题和Youcookii数据集的广泛实验表明,我们的方法显着优于竞争基础,并根据主题和客观测试产生更多人类文本。
translated by 谷歌翻译