目标是在杂乱或Textuleless环境,相机(和多传感器)校准任务中的对象跟踪等问题,以及同时本地化和映射(SLAM)。用于这些任务的目标形状通常是对称的(方形,矩形或圆形),并且适用于结构化的密集传感器数据(例如像素阵列(即,图像)。然而,当使用稀疏传感器数据(例如LIDAR点云)并且遭受LIDAR的量化不确定性时,对称形状导致占用歧义。本文介绍了优化目标形状的概念,以消除LIDAR点云的姿势模糊性。目标被设计成在旋转和平移下的边缘点处引起大梯度,而相对于LIDAR以改善与点云稀疏相关的量化不确定性。此外,考虑到目标形状,我们提出了一种利用目标的几何形状来估计目标顶点的手段,同时全局估计姿势。模拟和实验结果(通过运动捕获系统验证)确认,通过使用最佳形状和全球求解器,即使在部分照明的目标放置30米处,我们也可以在翻译中的厘米误差和几度旋转。所有实现和数据集都可以在https://github.com/umich-bipedlab/optimal_shape_global_pose_estimation中获得。
translated by 谷歌翻译
基于传感器的环境感知是自主驾驶系统的关键步骤,多个传感器之间的准确校准起着至关重要的作用。为了校准激光雷达和相机,现有方法通常是先校准相机的固有,然后校准激光雷达和相机的外部。如果在第一阶段无法正确校准摄像机的固有效果,则可以准确地校准激光镜相机外部校准并不容易。由于相机的复杂内部结构以及缺乏对摄像机内在校准的有效定量评估方法,因此在实际校准中,由于摄像机内在参数的微小误差,外部参数校准的准确性通常会降低。为此,我们提出了一种新型的基于目标的关节校准方法,用于摄像机内在和激光摄像机外部参数。首先,我们设计了一个新颖的校准板图案,在棋盘上增加了四个圆形孔,以定位激光姿势。随后,在棋盘板的再投影约束和圆形孔特征下定义的成本函数旨在求解相机的内在参数,失真因子和激光相机外部外部参数。最后,定量和定性实验是在实际和模拟环境中进行的,结果表明该方法可以达到准确性和鲁棒性能。开源代码可在https://github.com/opencalib/jointcalib上获得。
translated by 谷歌翻译
我们考虑了一个类别级别的感知问题,其中给定的2D或3D传感器数据描绘了给定类别的对象(例如,汽车),并且必须重建尽管级别的可变性,但必须重建对象的3D姿势和形状(即,不同的汽车模型具有不同的形状)。我们考虑了一个主动形状模型,其中 - 对于对象类别 - 我们获得了一个潜在的CAD模型库,描述该类别中的对象,我们采用了标准公式,其中姿势和形状是通过非非2D或3D关键点估算的-convex优化。我们的第一个贡献是开发PACE3D*和PACE2D*,这是第一个使用3D和2D关键点进行姿势和形状估计的最佳最佳求解器。这两个求解器都依赖于紧密(即精确)半决赛的设计。我们的第二个贡献是开发两个求解器的异常刺激版本,命名为PACE3D#和PACE2D#。为了实现这一目标,我们提出了Robin,Robin是一种一般的图理论框架来修剪异常值,该框架使用兼容性超图来建模测量的兼容性。我们表明,在类别级别的感知问题中,这些超图可以是通过关键点(以2D)或其凸壳(以3D为单位)构建的,并且可以通过最大的超级计算来修剪许多异常值。最后的贡献是广泛的实验评估。除了在模拟数据集和Pascal数据集上提供消融研究外,我们还将求解器与深关键点检测器相结合,并证明PACE3D#在Apolloscape数据集中在车辆姿势估算中改进了最新技术,并且其运行时间是兼容的使用实际应用。
translated by 谷歌翻译
虽然相机和激光雷达在大多数辅助和自主驾驶系统中广泛使用,但仅提出了少数作品来将用于在线传感器数据融合的摄像机和镜头的时间同步和外部校准相关联。时间和空间校准技术正面临缺乏相关性和实时的挑战。在本文中,我们介绍了姿势估计模型和环境鲁棒线的提取,以提高数据融合和即时在线校正能力的相关性。考虑到相邻力矩之间的点云匹配的对应关系,动态目标旨在寻求最佳政策。搜索优化过程旨在以计算精度和效率提供准确的参数。为了证明这种方法的好处,我们以基础真实价值在基蒂基准上进行评估。在在线实验中,与时间校准中的软同步方法相比,我们的方法提高了准确性38.5%。在空间校准时,我们的方法会在0.4秒内自动纠正干扰误差,并达到0.3度的精度。这项工作可以促进传感器融合的研究和应用。
translated by 谷歌翻译
姿势估计准确性的提高是目前移动机器人中的基本问题。本研究旨在改善观察的使用以提高准确性。选择要点的选择会影响姿势估计的准确性,导致观察贡献如何影响系统的问题。因此,分析了信息对姿势估计过程的贡献。此外,配制了不确定性模型,灵敏度模型和贡献理论,提供了一种计算每种残留项的贡献的方法。所提出的选择方法已经理解证明能够实现全局统计最优。所提出的方法在人工数据模拟上进行测试,与基特基准进行比较。该实验揭示了与Aloam和Mloam对比的优异结果。所提出的算法在LIDAR Idomatry和LIDAR惯性内径术中使用不同的LIDAR传感器,使用不同的扫描模式,展示其提高姿态估计精度的有效性。随后推断出两个激光扫描传感器的新配置。该配置对于先前地图中的三维姿态定位是有效的,并且产生厘米级的结果。
translated by 谷歌翻译
束调整(BA)是指同时确定传感器姿势和场景几何形状的问题,这是机器人视觉中的一个基本问题。本文为LIDAR传感器提供了一种有效且一致的捆绑捆绑调整方法。该方法采用边缘和平面特征来表示场景几何形状,并直接最大程度地减少从每个原始点到各自几何特征的天然欧几里得距离。该公式的一个不错的属性是几何特征可以在分析上解决,从而大大降低了数值优化的维度。为了更有效地表示和解决最终的优化问题,本文提出了一个新颖的概念{\ it point clusters},该概念编码了通过一组紧凑的参数集与同一特征相关联的所有原始点,{\ it点群集坐标} 。我们根据点簇坐标得出BA优化的封闭形式的衍生物,并显示其理论属性,例如零空间和稀疏性。基于这些理论结果,本文开发了有效的二阶BA求解器。除了估计LiDAR姿势外,求解器还利用二阶信息来估计测量噪声引起的姿势不确定性,从而导致对LIDAR姿势的一致估计。此外,由于使用点群集的使用,开发的求解器从根本上避免了在优化的所有步骤中列出每个原始点(由于数量大量而非常耗时):成本评估,衍生品评估和不确定性评估。我们的方法的实施是开源的,以使机器人界及其他地区受益。
translated by 谷歌翻译
We propose a real-time method for odometry and mapping using range measurements from a 2-axis lidar moving in 6-DOF. The problem is hard because the range measurements are received at different times, and errors in motion estimation can cause mis-registration of the resulting point cloud. To date, coherent 3D maps can be built by off-line batch methods, often using loop closure to correct for drift over time. Our method achieves both low-drift and low-computational complexity without the need for high accuracy ranging or inertial measurements.The key idea in obtaining this level of performance is the division of the complex problem of simultaneous localization and mapping, which seeks to optimize a large number of variables simultaneously, by two algorithms. One algorithm performs odometry at a high frequency but low fidelity to estimate velocity of the lidar. Another algorithm runs at a frequency of an order of magnitude lower for fine matching and registration of the point cloud. Combination of the two algorithms allows the method to map in real-time. The method has been evaluated by a large set of experiments as well as on the KITTI odometry benchmark. The results indicate that the method can achieve accuracy at the level of state of the art offline batch methods.
translated by 谷歌翻译
Accurate and safety-quantifiable localization is of great significance for safety-critical autonomous systems, such as unmanned ground vehicles (UGV) and unmanned aerial vehicles (UAV). The visual odometry-based method can provide accurate positioning in a short period but is subjected to drift over time. Moreover, the quantification of the safety of the localization solution (the error is bounded by a certain value) is still a challenge. To fill the gaps, this paper proposes a safety-quantifiable line feature-based visual localization method with a prior map. The visual-inertial odometry provides a high-frequency local pose estimation which serves as the initial guess for the visual localization. By obtaining a visual line feature pair association, a foot point-based constraint is proposed to construct the cost function between the 2D lines extracted from the real-time image and the 3D lines extracted from the high-precision prior 3D point cloud map. Moreover, a global navigation satellite systems (GNSS) receiver autonomous integrity monitoring (RAIM) inspired method is employed to quantify the safety of the derived localization solution. Among that, an outlier rejection (also well-known as fault detection and exclusion) strategy is employed via the weighted sum of squares residual with a Chi-squared probability distribution. A protection level (PL) scheme considering multiple outliers is derived and utilized to quantify the potential error bound of the localization solution in both position and rotation domains. The effectiveness of the proposed safety-quantifiable localization system is verified using the datasets collected in the UAV indoor and UGV outdoor environments.
translated by 谷歌翻译
Using geometric landmarks like lines and planes can increase navigation accuracy and decrease map storage requirements compared to commonly-used LiDAR point cloud maps. However, landmark-based registration for applications like loop closure detection is challenging because a reliable initial guess is not available. Global landmark matching has been investigated in the literature, but these methods typically use ad hoc representations of 3D line and plane landmarks that are not invariant to large viewpoint changes, resulting in incorrect matches and high registration error. To address this issue, we adopt the affine Grassmannian manifold to represent 3D lines and planes and prove that the distance between two landmarks is invariant to rotation and translation if a shift operation is performed before applying the Grassmannian metric. This invariance property enables the use of our graph-based data association framework for identifying landmark matches that can subsequently be used for registration in the least-squares sense. Evaluated on a challenging landmark matching and registration task using publicly-available LiDAR datasets, our approach yields a 1.7x and 3.5x improvement in successful registrations compared to methods that use viewpoint-dependent centroid and "closest point" representations, respectively.
translated by 谷歌翻译
这项工作描述了使用配备有单个向上的鱼眼相机和背光的移动校准机器人,该机器人的自动注册(约40个)固定网络(约40个)的固定,天花板安装的环境相机(约800平方米)的自动注册(约800平方米) Aruco标记以容易检测。 Fisheye摄像头用于进行视觉进程(VO),Aruco标记有助于在环境摄像机中轻松检测校准机器人。此外,鱼眼摄像机还能够检测到环境相机。这个双向双向检测限制了环境摄像机的姿势以解决优化问题。这种方法可用于自动注册用于监视,自动停车或机器人应用的大型多摄像机系统。这种基于VO的多机登记方法是使用现实世界实验进行了广泛验证的,并且还与使用LIDAR的类似方法进行了比较,该方法使用LIDAR(一种昂贵,更重,更重,饥饿的传感器)。
translated by 谷歌翻译
确定多个激光痛和相机之间的外在参数对于自主机器人至关重要,尤其是对于固态激光痛,每个LIDAR单元具有很小的视野(FOV)(FOV),并且通常集体使用多个单元。对于360 $^\ circ $机械旋转激光盆,提出了大多数外部校准方法,其中假定FOV与其他LIDAR或相机传感器重叠。很少有研究工作集中在校准小型FOV激光痛和摄像头,也没有提高校准速度。在这项工作中,我们考虑了小型FOV激光痛和相机之间外部校准的问题,目的是缩短总校准时间并进一步提高校准精度。我们首先在LIDAR特征点的提取和匹配中实现自适应体素化技术。这样的过程可以避免在激光痛外校准中冗余创建$ k $ d树,并以比现有方法更可靠和快速提取激光雷达特征点。然后,我们将多个LIDAR外部校准制成LIDAR束调节(BA)问题。通过将成本函数得出最高为二阶,可以进一步提高非线性最小平方问题的求解时间和精度。我们提出的方法已在四个无目标场景和两种类型的固态激光雷达中收集的数据进行了验证,这些扫描模式,密度和FOV完全不同。在八个初始设置下,我们工作的鲁棒性也得到了验证,每个设置包含100个独立试验。与最先进的方法相比,我们的工作提高了激光雷达外部校准的校准速度15倍,激光摄像机外部校准(由50个独立试验产生的平均),同时保持准确,同时保持准确。
translated by 谷歌翻译
凭借在运动扫描系统生产的LIDAR点云注册的目的,我们提出了一种新颖的轨迹调整程序,可以利用重叠点云和关节集成之间所选可靠的3D点对应关系的自动提取。 (调整)与所有原始惯性和GNSS观察一起。这是使用紧密耦合的方式执行的动态网络方法来执行,这通过在传感器处的错误而不是轨迹等级来实现最佳补偿的轨迹。 3D对应关系被制定为该网络内的静态条件,并且利用校正的轨迹和可能在调整内确定的其他参数,以更高的精度生成注册点云。我们首先描述了选择对应关系以及将它们作为新观察模型作为动态网络插入的方法。然后,我们描述了对具有低成本MEMS惯性传感器的实用空气激光扫描场景中提出框架的性能进行评估。在进行的实验中,建议建立3D对应关系的方法在确定各种几何形状的点对点匹配方面是有效的,例如树木,建筑物和汽车。我们的结果表明,该方法提高了点云登记精度,否则在确定的平台姿态或位置(以标称和模拟的GNSS中断条件)中的错误受到强烈影响,并且可能仅使用总计的一小部分确定未知的触觉角度建立的3D对应数量。
translated by 谷歌翻译
准确可靠的传感器校准对于在自主驾驶中融合激光雷达和惯性测量至关重要。本文提出了一种新型的3D-LIDAR和姿势传感器的新型三阶段外部校准方法,用于自主驾驶。第一阶段可以通过点云表面特征快速校准传感器之间的外部参数,以便可以将外部参数从大的初始误差范围缩小到很小的时间范围。第二阶段可以基于激光映射空间占用率进一步校准外部参数,同时消除运动失真。在最后阶段,校正了由自动驾驶汽车的平面运动引起的Z轴误差,并最终获得了精确的外部参数。具体而言,该方法利用了道路场景的自然特征,使其独立且易于在大规模条件下应用。现实世界数据集的实验结果证明了我们方法的可靠性和准确性。这些代码是在GitHub网站上开源的。据我们所知,这是第一个专门为自动驾驶设计的开源代码,用于校准激光雷达和姿势传感器外部参数。代码链接是https://github.com/opencalib/lidar2ins。
translated by 谷歌翻译
尽管常规机器人系统中的每个不同任务都需要专用的场景表示形式,但本文表明,统一表示形式可以直接用于多个关键任务。我们提出了用于映射,进程和计划(LOG-GPIS-MOP)的log-gaussian过程隐式表面:基于统一表示形式的表面重建,本地化和导航的概率框架。我们的框架将对数转换应用于高斯过程隐式表面(GPIS)公式,以恢复全局表示,该表示可以准确地捕获具有梯度的欧几里得距离场,同时又是隐式表面。通过直接估计距离字段及其通过LOG-GPIS推断的梯度,提出的增量进程技术计算出传入帧的最佳比对,并在全球范围内融合以生成MAP。同时,基于优化的计划者使用相同的LOG-GPIS表面表示计算安全的无碰撞路径。我们根据最先进的方法验证了2D和3D和3D和基准测试的模拟和真实数据集的拟议框架。我们的实验表明,LOG-GPIS-MOP在顺序的音程,表面映射和避免障碍物中产生竞争结果。
translated by 谷歌翻译
本文介绍了使用腿收割机进行精密收集任务的集成系统。我们的收割机在狭窄的GPS拒绝了森林环境中的自主导航和树抓取了一项挑战性的任务。提出了映射,本地化,规划和控制的策略,并集成到完全自主系统中。任务从使用定制的传感器模块开始使用人员映射感兴趣区域。随后,人类专家选择树木进行收获。然后将传感器模块安装在机器上并用于给定地图内的本地化。规划算法在单路径规划问题中搜索一个方法姿势和路径。我们设计了一个路径,后面的控制器利用腿的收割机的谈判粗糙地形的能力。在达接近姿势时,机器用通用夹具抓住一棵树。此过程重复操作员选择的所有树。我们的系统已经在与树干和自然森林中的测试领域进行了测试。据我们所知,这是第一次在现实环境中运行的全尺寸液压机上显示了这一自主权。
translated by 谷歌翻译
在本文中,我们使用从低成本消费者RGB-D传感器获取的RGB-D数据提出蘑菇检测,定位和3D姿势估计算法。我们使用RGB和深度信息进行不同的目的。从RGB颜色,我们首先提取蘑菇的初始轮廓位置,然后将初始轮廓位置和原始图像提供给蘑菇分割的活动轮廓。然后将这些分段蘑菇用作每个蘑菇检测的圆形Hough变换的输入,包括其中心和半径。一旦RGB图像中的每个蘑菇的中心位置都是已知的,我们就会使用深度信息在3D空间中定位它,即在世界坐标系中。在每个蘑菇的检测到的中心缺少深度信息的情况下,我们从每个蘑菇的半径内的最近可用深度信息估计。我们还使用预先准备的直立蘑菇模型来估计每个蘑菇的3D姿势。我们使用全球注册,然后是本地精炼登记方法进行此3D姿势估计。从估计的3D姿势,我们仅使用四元素表示的旋转部分作为每个蘑菇的方向。这些估计(X,Y,Z)位置,直径和蘑菇的方向用于机器人拣选应用。我们对3D印刷和真正的蘑菇进行了广泛的实验,表明我们的方法具有有趣的性能。
translated by 谷歌翻译
在本文中,我们评估了八种流行和开源的3D激光雷达和视觉大满贯(同时定位和映射)算法,即壤土,乐高壤土,lio sam,hdl graph,orb slam3,basalt vio和svo2。我们已经设计了室内和室外的实验,以研究以下项目的影响:i)传感器安装位置的影响,ii)地形类型和振动的影响,iii)运动的影响(线性和角速速度的变化)。我们根据相对和绝对姿势误差比较它们的性能。我们还提供了他们所需的计算资源的比较。我们通过我们的多摄像机和多大摄像机室内和室外数据集进行彻底分析和讨论结果,并确定环境案例的最佳性能系统。我们希望我们的发现可以帮助人们根据目标环境选择一个适合其需求的传感器和相应的SLAM算法组合。
translated by 谷歌翻译
在这项研究中,我们提出了一种新型的视觉定位方法,以根据RGB摄像机的可视数据准确估计机器人在3D激光镜头内的六个自由度(6-DOF)姿势。使用基于先进的激光雷达的同时定位和映射(SLAM)算法,可获得3D地图,能够收集精确的稀疏图。将从相机图像中提取的功能与3D地图的点进行了比较,然后解决了几何优化问题,以实现精确的视觉定位。我们的方法允许使用配备昂贵激光雷达的侦察兵机器人一次 - 用于映射环境,并且仅使用RGB摄像头的多个操作机器人 - 执行任务任务,其本地化精度高于常见的基于相机的解决方案。该方法在Skolkovo科学技术研究所(Skoltech)收集的自定义数据集上进行了测试。在评估本地化准确性的过程中,我们设法达到了厘米级的准确性;中间翻译误差高达1.3厘米。仅使用相机实现的确切定位使使用自动移动机器人可以解决需要高度本地化精度的最复杂的任务。
translated by 谷歌翻译
现有的LIDAR基金​​标记系统具有使用限制。特别是,利达塔格(Lidartag)需要特定的标记放置和基于图像的激光雷达基准标记,要求从一个角度对点云进行采样。结果,随着点云从多个角度采样,基准标记的检测仍然是一个未解决的问题。在这封信中,我们开发了一种新颖的算法来检测多视点云中的基准标记。提出的算法包括两个阶段。首先,感兴趣的区域(ROI)检测发现可能包含基准标记的点簇。具体而言,由于从空间的角度来看,从强度的角度提取ROI的方法是引入的,即从空间角度来看,标记是纸张或薄板的床单,与它们所连接的平面是不可区分的。其次,标记检测验证候选ROI是否包含基金标记,并输出有效ROI中标记的ID号和顶点位置。特别是,将ROI传输到预定义的中间平面,目的是采用球形投影以生成强度图像,然后通过强度图像完成标记检测。提供定性和定量实验结果以验证所提出的算法。代码和结果可在以下网址获得:https://github.com/york-sdcnlab/marker?detection-general
translated by 谷歌翻译
本文介绍了一种新颖的体系结构,用于同时估算高度准确的光流和刚性场景转换,以实现困难的场景,在这种情况下,亮度假设因强烈的阴影变化而违反了亮度假设。如果是旋转物体或移动的光源(例如在黑暗中驾驶汽车遇到的光源),场景的外观通常从一个视图到下一个视图都发生了很大变化。不幸的是,用于计算光学流或姿势的标准方法是基于这样的期望,即场景中特征在视图之间保持恒定。在调查的情况下,这些方法可能经常失败。提出的方法通过组合图像,顶点和正常数据来融合纹理和几何信息,以计算照明不变的光流。通过使用粗到最新的策略,可以学习全球锚定的光流,从而减少了基于伪造的伪相应的影响。基于学习的光学流,提出了第二个体系结构,该体系结构可预测扭曲的顶点和正常地图的稳健刚性变换。特别注意具有强烈旋转的情况,这通常会导致这种阴影变化。因此,提出了一个三步程序,该程序可以利用正态和顶点之间的相关性。该方法已在新创建的数据集上进行了评估,该数据集包含具有强烈旋转和阴影效果的合成数据和真实数据。该数据代表了3D重建中的典型用例,其中该对象通常在部分重建之间以很大的步骤旋转。此外,我们将该方法应用于众所周知的Kitti Odometry数据集。即使由于实现了Brighness的假设,这不是该方法的典型用例,因此,还建立了对标准情况和与其他方法的关系的适用性。
translated by 谷歌翻译